KL散度在很多算法细节公式中是一个很重要的点,这里详细整理一下 数据的熵 K-L散度度量信息损失 对比两种分布 散度并非距离 NLPer了解这么多就够了。 再总结一下: KL散度在很多算法细节公式中是一个很重要的点,这里详细整理一下