K-L散度 初了解

主要参考博文:
https://www.jianshu.com/p/43318a3dc715?isappinstalled=0
https://blog.csdn.net/chdhust/article/details/8506260

K-L散度

K-L散度,量化两种概率分布P和Q之间差异的方式,又叫相对熵。
如果数据的分布模型非常复杂,可以使用另外一种简单的、近似的分布来替代原模型,用K-L散度来很度量替代过程损失的信息量。

1、K-L散度的定义

在这里插入图片描述

2、熵

最重要的信息度量单位:Entropy
在这里插入图片描述
对数的底数取2的时候,可以把该等式的数值看作是编码信息所需要的最少二进制位个数bits。
如果有一个信息给我们,我们可以求解熵的数值获取这个信息数据最优编码方案的理论下界,也可以用于度量该信息的信息量。

3、信息损失

设p为观察得到的概率分布,q为另一分布来近似p,则p、q的K-L散度如下:
在这里插入图片描述
当对数的底数取2,则K-L散度表示信息损失的二进制位数。
前半部分形式和熵计算公式基本一致,后半部分则有不同,故K-L散度不是简单的熵值相减
K-L散度的计算公式不符合对称性(距离度量应该满足对称性),故也不能理解为不同分布之间的距离
也就是说,用p近似q和用q近似p,二者所损失的信息并不是一样的。
另外:用一个新分布去度量原始分布,信息必定有损失,故K-L散度必定大于0,这里可以用Jensen不等式证明上面等式始终大于0。
DKL(Q||P) = -∑Q(x)log[P(x)/Q(x)] = E[-logP(x)/Q(x)] ≥ -logE[P(x)/Q(x)] = -log∑Q(x)P(x)/Q(x) = 0

4、优化模型

一般通过最小化K-L散度,优化等效模型
给出新的分布模型,该模型的参数向量作为输入量
可以通过计算给出一个最小化K-L散度的参数向量,就是新的分布模型参量

5、交叉熵

在神经网络中往往使用交叉熵损失函数,而不是相对熵?
后续学习补充……

6、应用于推荐系统

在使用LDA(Latent Dirichlet Allocation)计算物品的内容相似度时
先计算出物品在话题上的分布,然后利用两个物品的话题分布计算物品的相似度。
比如,如果两个物品的话题分布相似,则认为两个物品具有较高的相似度,反之则认为两个物品的相似度较低。计算分布的相似度可以利用KL散度来计算:KL散度越大说明分布的相似度越低。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: VMD是一种信号分解方法,通常需要确定分解信号的分量数k。利用KL散度或相对熵作为衡量信号分解精度的指标,可以确定VMD分解信号的最优k值。 KL散度是一种度量两个概率分布之间距离的方法,用于衡量两个概率分布之间的差异程度。在VMD分解中,我们可以将原始信号看作一个概率分布,将分解得到的k个分量也看作k个概率分布,然后计算每个分量与原始信号的KL散度值。KL散度值越小,说明分量与原始信号的相似度越高,因此可以作为衡量分解精度的指标。 在VMD分解中,我们可以尝试不同的k值进行分解得到k个分量,然后计算每个分量与原始信号的KL散度值。随着k值的增大,各分量之间的相似度也会增加,但是同一分量内的相似度不变或稍微降低。因此KL散度与k值的关系呈现出先减小后增加的趋势,最优的k值就是当KL散度达到最小值时的k值。 通过计算KL散度,我们可以优化VMD分解信号的k值,得到更加精确的分解结果。与其他方法相比,利用KL散度优化k值的方法可以灵活地适应不同的信号特征,具有一定的泛化能力。 ### 回答2: VMD是一种新型的信号分解方法,可以将信号分解成不同频率成分的和。在实际应用中,如何确定VMD分解信号的最优参数值是非常重要的。其中,确定最优的K值是至关重要的。 为了确定VMD分解信号的最优k值,可以采用k-l散度(相对熵)方法。K-L散度是一个用来衡量两个概率分布之间差异的指标,它可以反映出两个分布之间差异的大小。因此,我们可以通过比较不同k值下VMD分解的信号和原始信号之间的k-l散度值,来选择最优的k值。 具体而言,我们可以运用交叉验证法来选择最优的k值。将原始信号分为训练集和验证集,用训练集进行VMD分解,然后利用验证集检验VMD分解结果的准确度。在不同的k值下进行VMD分解和验证,记录不同k值下的k-l散度值,最终找到使k-l散度值最小的k值。 在实际应用中,通过利用k-l散度确定最优的k值,可以避免过分拟合或者欠拟合的现象,提高信号分解的准确度和稳定性,从而提高VMD在实际应用中的应用价值。 ### 回答3: VMD(Variate Mode Decomposition)是一种信号分解方法,它将原始信号分解为若干个固有模态函数(Intrinsic Mode Functions,IMF),每个IMF表示一个频率成分。在确定VMD分解的最优k值时,可以使用K-L散度(相对熵)来评估分解效果。 K-L散度是一种度量两个概率分布之间差异的方法,衡量的是一个概率分布相对于另一个概率分布的信息损失,两个概率分布越接近,K-L散度越小。在VMD分解中,原始信号被分解成k个IMF,每个IMF对应一个频率成分。通过对每个IMF的功率谱分布计算K-L散度,可以评估VMD分解时k值的选择。 具体地,可以计算连续两个IMF的功率谱分布的K-L散度,选取具有最小K-L散度的k值作为最优k值。根据这个方法可以避免过分分解或不足分解的问题,达到最优的频率成分分解效果。 总之,利用K-L散度来确定VMD分解的最优k值能够有效评估频率成分的分解效果,提高信号分解精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值