509、斐波那契数

509、斐波那契数

题目

斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 01 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1

给你 n ,请计算 F(n)

示例 1:

输入:2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:

输入:3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2

示例 3:

输入:4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3

提示:

  • 0 <= n <= 30

解答:

法一:

public static int Fib(int n)
{
    //递归
    //根据公式F(n) = F(n - 1) + F(n - 2)
    if (n < 2) 
    {
        return n;
    }
    return Fib(n - 1) + Fib(n - 2);
}

法二:

public static int Fib1(int n)
{
    //迭代
    //从最底层到结果
    if (n < 2)
    {
        return n;
    }
    int firstNum = 0;
    int secondNum = 1;
    int curRes = 0;
    for (int i = 0; i < n - 1; i++) 
    {
        curRes = firstNum + secondNum;
        firstNum = secondNum;
        secondNum = curRes;
    }
    return curRes;
}

法三:

公式:
a n = 1 5 [ ( 1 + 5 2 ) n − ( 1 − 5 2 ) n ] {{a}_{n}}=\frac{1}{\sqrt{5}}\left[ {{\left( \frac{1+\sqrt{5}}{2} \right)}^{n}}-{{\left( \frac{1-\sqrt{5}}{2} \right)}^{n}} \right] an=5 1[(21+5 )n(215 )n]

public static int Fib2(int n)
{
    double f1 = (1 + Math.Sqrt(5)) / 2;
    double f2 = (1 - Math.Sqrt(5)) / 2;
    //Round取整
    return (int)Math.Round((Math.Pow(f1, n) - Math.Pow(f2, n)) / Math.Sqrt(5));
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值