509、斐波那契数
题目
斐波那契数,通常用 F(n)
表示,形成的序列称为 斐波那契数列 。该数列由 0
和 1
开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给你 n
,请计算 F(n)
。
示例 1:
输入:2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1
示例 2:
输入:3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2
示例 3:
输入:4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3
提示:
0 <= n <= 30
解答:
法一:
public static int Fib(int n)
{
//递归
//根据公式F(n) = F(n - 1) + F(n - 2)
if (n < 2)
{
return n;
}
return Fib(n - 1) + Fib(n - 2);
}
法二:
public static int Fib1(int n)
{
//迭代
//从最底层到结果
if (n < 2)
{
return n;
}
int firstNum = 0;
int secondNum = 1;
int curRes = 0;
for (int i = 0; i < n - 1; i++)
{
curRes = firstNum + secondNum;
firstNum = secondNum;
secondNum = curRes;
}
return curRes;
}
法三:
公式:
a
n
=
1
5
[
(
1
+
5
2
)
n
−
(
1
−
5
2
)
n
]
{{a}_{n}}=\frac{1}{\sqrt{5}}\left[ {{\left( \frac{1+\sqrt{5}}{2} \right)}^{n}}-{{\left( \frac{1-\sqrt{5}}{2} \right)}^{n}} \right]
an=51[(21+5)n−(21−5)n]
public static int Fib2(int n)
{
double f1 = (1 + Math.Sqrt(5)) / 2;
double f2 = (1 - Math.Sqrt(5)) / 2;
//Round取整
return (int)Math.Round((Math.Pow(f1, n) - Math.Pow(f2, n)) / Math.Sqrt(5));
}