
PTA
文章平均质量分 82
修炼室
这个作者很懒,什么都没留下…
展开
-
双指针优化解法:原地操作,最少步骤移动零
通过交换非零元素和零元素来完成重新排列。这样,零元素会自动被推到数组末尾。要完成这个任务,可以有多种解法。移动到数组的末尾,同时保持非零元素的相对顺序。为了优化,我们还需要尽量减少操作次数。为例,逐步观察每次操作的状态变化。为例,用表格展示每一步的状态变化。原创 2024-11-18 10:39:52 · 956 阅读 · 0 评论 -
用哈希表打造极简算法!教你用‘找起点’技巧拿下最长连续序列
找起点:只从序列的起点开始计算,可以避免重复计算,提升效率。利用哈希集合:通过哈希集合快速查找元素是否存在,保证 O(n) 的时间复杂度。线性扫描:遍历每个元素,判断是否为序列的起点并计算长度,确保只访问每个元素一次。原创 2024-11-13 10:22:51 · 672 阅读 · 0 评论 -
哈希表巧解字母异位词分组:从思路到实现的全方位讲解
字符串排序法:通过对每个字符串排序,使字母异位词具有相同的排序结果,从而可以分组。这种方法简单直接,适合普通情况。字符频次法:通过统计字符出现频率,将频率数组作为特征,用于分组。该方法避免了排序,适合字符串较长的情况。这两种方法可以根据实际情况选择使用。理解这两种方法的不同特征,可以帮助我们更好地解决字母异位词分组的问题。原创 2024-11-12 19:19:27 · 1028 阅读 · 0 评论 -
从 O(n²) 到 O(n):单调栈在算法中的妙用
通过以上分析,我们掌握了使用单调栈的方法来解决“寻找下一个更高温度”的问题。单调栈不仅适用于温度问题,还广泛应用于“寻找下一个更大/更小元素”一类的题目中,值得深入理解和掌握。在实际工程中,这种方法在数据处理、优化算法性能等方面也有着重要的应用。原创 2024-11-08 10:04:04 · 992 阅读 · 0 评论 -
区间集合:通过排序用最少箭数引爆所有气球【排序】
通过将气球按结束位置进行排序,我们能够在遍历时有效判断重叠关系,最大限度地利用每支箭的覆盖范围。这种贪心策略确保了引爆所有气球所需箭的数量最小化。原创 2024-11-04 11:54:49 · 757 阅读 · 0 评论 -
区间集合:高效解决无重叠区间问题【贪心、区间集合】
通过对区间的排序和遍历,我们能够高效地解决无重叠区间的问题。利用贪心算法的策略,保持当前的结束时间来判断是否重叠,使得我们的解决方案简单而有效。这种方法适用于大规模输入,能够在合理的时间内得出结果。希望这篇解析能帮助读者更好地理解和实现无重叠区间的问题。原创 2024-11-01 09:24:54 · 1005 阅读 · 0 评论 -
逐步实现前缀匹配:LeetCode 搜索推荐系统题解与详解
通过以上步骤,我们实现了一个动态推荐系统,它能在用户逐字输入时提供实时的产品推荐。我们利用字符串的find()方法有效地检查前缀匹配,同时通过逐步构建前缀确保推荐的准确性。这种算法设计思路不仅清晰而且高效,适合处理实际应用中的类似问题。希望本博客能帮助读者更好地理解此算法的实现过程和细节。原创 2024-10-31 17:02:35 · 872 阅读 · 0 评论 -
从零开始理解 Trie 树:高效字符串存储与查找的利器【自动补全、拼写检查】
(root)app (end)le (end)"app"是一条有效路径,以p (end)为结尾。"apple"是另一条有效路径,以e (end)为结尾。这道题中的 Trie 数据结构为我们提供了一种快速存储和查询大量字符串的方法,特别适合具有公共前缀的字符串。通过这种数据结构,可以高效地完成自动补全、拼写检查等操作。在实现过程中,我们使用了TrieNode和Trie类分别表示节点和整个前缀树,采用存储子节点关系,实现了 O(m) 时间复杂度的插入和查找功能。原创 2024-10-26 08:08:34 · 1072 阅读 · 0 评论 -
位运算挑战:通过最少位翻转实现 a OR b == c【逐位处理与右移操作】
通过对ab和c进行逐位比较,我们能够找出最少的位翻转次数,使得a | b == c。该算法的时间复杂度为,空间复杂度为O(1),非常高效。通过扩展边界条件、复杂度分析和优化方案的讨论,本文不仅详细介绍了基本的位运算方法,也为深入研究和实际应用提供了理论依据。原创 2024-10-25 10:00:49 · 710 阅读 · 0 评论 -
经典动态规划问题:含手续费的股票买卖【从 O(n) 到 O(1) 的优化解析】
最优子结构:第i天的状态只取决于第i-1天的状态。状态转移方程空间优化:我们只需要两个变量hold和cash,可以将空间复杂度从O(n)优化到O(1)。原创 2024-10-23 14:08:03 · 721 阅读 · 0 评论 -
动态规划详解:最长公共子序列问题的高效解法
我们可以定义一个二维数组dp,其中dp[i][j]表示text1[0:i]和text2[0:j]的最长公共子序列的长度。动态规划是解决最长公共子序列问题的最优解法,时间复杂度为O(m * n),空间复杂度也是O(m * n)。通过二维数组存储子问题的解,可以避免大量的重复计算。**递归法(带备忘录)**也是一种可行的方案,它通过递归来逐步求解子问题,使用备忘录存储中间结果,从而避免重复计算,时间复杂度同样为O(m * n)。原创 2024-10-21 08:17:44 · 5255 阅读 · 0 评论 -
解锁网格路径问题的多解法思路:递归、动态规划与组合数公式
递归法适合初学者理解递归和问题分解的思想,但效率不高。动态规划法是解决此类问题的常用方法,通过表格存储中间结果,能处理较大规模数据。组合数学法直接运用组合数公式,提供最优解,时间和空间复杂度都最小,但需要一定的数学基础。原创 2024-10-20 08:03:14 · 1242 阅读 · 0 评论 -
一步步讲解:如何通过动态规划解决「爬楼梯最低花费」问题
我们可以定义一个数组dp,其中dp[i]表示到达第i个台阶所需要的最低花费。我们的目标是找到dp数组的最优解。可以从第 0 层或第 1 层开始,因此。从第 2 层开始,我们需要从前面的两个台阶i-1或i-2跳上来,因此状态转移方程是:dpimindpi−1dpi−2costidpimindpi−1dpi−2])costi这意味着到达第i个台阶,我们可以选择从i-1或i-2。原创 2024-10-17 07:59:00 · 1328 阅读 · 0 评论 -
从回溯法到剪枝优化: 找出相加之和为 n 的 k 个数的组合
回溯法是解决此类组合问题的常用方法,但若不进行优化容易造成超时。通过合理的剪枝优化,可以大幅减少无效计算,从而提高算法性能。本题的解法适用于组合问题中的数字范围较小、数字不重复等特定约束场景。希望通过对回溯法的详细分析和剪枝优化的讲解,能帮助你更好地理解如何解决这个问题。如果有其他更复杂的变体问题,我们可以继续讨论如何处理不同的约束条件。原创 2024-10-14 11:11:43 · 1211 阅读 · 0 评论 -
回溯法与迭代法详解:如何从手机数字键盘生成字母组合
回溯法:通过递归逐步构建可能的组合,并在递归结束后撤销选择,时间复杂度接近O3nO(3^n)O3n或O4nO(4^n)O4n,取决于数字对应的字母数量。回溯算法的优点是易于实现,适合处理这种组合问题。迭代法(队列):通过队列逐步构建组合,时间复杂度也是O3nO(3^n)O3n或O4nO(4^n)O4n。虽然有时实现起来可能比递归稍微复杂,但它在一些情况下的性能表现会更好。对于新手来说,回溯法可能是更直观的解法,因为它的思路清晰,非常适合处理类似的组合问题。原创 2024-10-12 11:28:12 · 1366 阅读 · 0 评论 -
二分查找在最小化问题中的应用:一步步解决“爱吃香蕉的珂珂”问题
该问题本质上是一个使用二分查找求解最小化目标的优化问题。使用二分查找可以在OnlogmOnlogm时间复杂度内完成,其中n是香蕉堆的数量,m是香蕉堆中最大堆的香蕉数量。这种类型的问题通常适用于需要在一定条件下(如时间、资源)寻找最小值或最大值的场景。原创 2024-10-11 09:13:15 · 1111 阅读 · 0 评论 -
掌握寻找峰值元素的高效算法:从线性遍历到二分查找
通过详细分析和条件覆盖,确保了算法在各种情况下都能正确地找到一个峰值元素的索引。尽管线性遍历法简单直观,但在面对更大规模的数据时,可以考虑采用更高效的二分查找法以满足O(log n)的时间复杂度要求。二分查找方法通过利用数组的局部有序性,巧妙地缩小搜索范围,从而在O(log n)的时间复杂度内找到一个峰值。每次比较nums[mid]与,都能确保至少有一个峰值存在于更新后的搜索范围中,最终保证了算法的正确性和高效性。相比于线性遍历法,二分查找法在处理大规模数组时表现尤为优越。原创 2024-10-10 14:20:34 · 1238 阅读 · 0 评论 -
从暴力到优化:如何用二分查找解决成功组合问题
通过排序 + 二分查找,我们能够显著优化问题的时间复杂度。排序后,我们可以高效地找到满足条件的药水组合,避免了暴力解法中枚举所有药水的开销。在实际应用中,二分查找是一种非常常用的优化手段,尤其是在处理有序数据时。我们可以通过手动实现二分查找来替代。二分查找的目标是找到potions数组中第一个大于等于minPotion的元素。原生实现与的功能相同,但我们自己控制搜索的过程。原创 2024-10-09 15:27:24 · 869 阅读 · 0 评论 -
优先队列与双指针:最小化雇佣成本的算法解析
每轮选择时,比较两个堆的堆顶工人(代价最小的工人),然后将该工人移出堆,并从剩余的工人中补充新工人进入对应的堆中。这一段代码确保在选择完当前工人后,堆能够继续从工人列表中补充新工人,保证堆中始终有工人供后续选择。利用优先队列,我们能够快速找到当前候选工人中代价最小的工人。如果代价相等,优先选择左边的工人,因为题目要求在代价相同时选择下标较小的工人。,分别从工人列表的两端向内移动,用于动态管理当前可以选择的工人范围。这样可以保证我们能够在常数时间内找到代价最小的工人。我们的目标是以最小的总代价雇佣到。原创 2024-10-08 20:38:58 · 522 阅读 · 0 评论 -
贪心与优先队列相结合:如何高效求解最大子序列分数
通过贪心策略和优先队列的结合,我们能够高效解决“最大子序列的分数”这一问题。核心思路在于排序nums2来优先选择最大乘数,然后通过维护nums1中最大和的k个数来最大化分数。希望这篇文章能够帮助你深入理解该题目的优化方法和代码实现。原创 2024-10-06 17:04:40 · 1049 阅读 · 0 评论 -
快速选择 vs 最小堆:如何在数组中高效找到第K大元素?
是一种优先级队列,按指定优先级顺序处理队列中的元素。push():插入一个新元素。pop():移除堆顶元素(对于最大堆来说,堆顶是最大元素;对于最小堆来说,堆顶是最小元素)。top():返回堆顶元素。size():返回优先队列中元素的数量。empty():检查优先队列是否为空。在的默认实现中,它是一个最大堆,即top()函数返回的是队列中的最大元素。快速选择算法适用于一次性查找,可以在不完全排序的情况下快速找到第k大元素,具有较高的平均效率。最小堆算法适用于需要频繁查找第k。原创 2024-10-04 18:54:28 · 812 阅读 · 0 评论 -
如何在网格中模拟腐烂扩散:如何使用广度优先搜索(BFS)解题
BFS 思路:通过队列进行层次遍历,模拟腐烂橘子的扩散过程。特殊情况处理:如果一开始没有新鲜橘子,直接返回0;如果最后还有新鲜橘子没有腐烂,返回-1。原创 2024-10-03 15:41:16 · 1093 阅读 · 0 评论 -
迷宫中的最短路径:如何用 BFS 找到最近出口【算法模板】
在这篇文章中,我们将学习如何使用 **广度优先搜索(BFS)** 解决一个典型的迷宫问题,具体是从迷宫的一个入口出发,找到最近的出口。我们将一步步分析 BFS 是如何工作的,并展示详细的 C++ 实现代码,帮助你更好地理解算法的原理和细节。原创 2024-10-02 10:56:23 · 1490 阅读 · 0 评论 -
深度优先搜索(DFS)解题思路解析:如何通过图论计算除法求值
通过构建图并利用 DFS 或 BFS 来解决除法求值问题,能够高效处理多个查询。在解决此类问题时,图论的表示和搜索算法是非常直观且有效的选择。原创 2024-09-30 17:15:14 · 1307 阅读 · 0 评论 -
深入解析:二分查找算法在猜数字问题中的高效应用【基本二分查找思想】
此外,我们在实现过程中特别关注了中间值计算的溢出问题,保证了算法的健壮性。这个问题展示了二分查找的强大威力,并为我们提供了在其他场景中应用该算法的思路。今天我们探讨的是一道典型的二分查找问题,即通过不断猜测数字的大小,找出在某个范围内的目标数字。我们的目标是通过每次猜测逐步缩小范围,使得查找目标数字的效率达到最佳。时,查找范围已经缩小到唯一值,此时可以结束循环,返回当前值即可。通过这个接口,我们可以高效地缩小猜测范围,并最终锁定目标数字。在每一次迭代中,我们都将查找范围缩小一半,因此该算法的。原创 2024-09-06 10:57:07 · 1145 阅读 · 0 评论 -
使用位操作高效解决单个元素出现问题【位运算】
在处理数组中找出唯一的单个出现元素的问题时,异或运算提供了一个高效且优雅的解决方案。相比于使用哈希表记录次数的方法,异或运算不仅能保证线性时间复杂度,还能将空间复杂度降至常量。通过理解和掌握异或运算的性质,我们不仅能更好地解决这一类问题,还能将其应用到其他相关的算法场景中,大大提升算法编写的效率和性能。原创 2024-09-03 17:33:54 · 754 阅读 · 0 评论 -
DFS、BFS、Union-Find:找出图中省份数量的最佳方法
这个问题实际上是在求图中的连通分量数量。每个省份对应于图中的一个连通分量。我们可以将城市看作图中的节点,直接相连表示节点之间有边。有几种常见的方法可以求解连通分量:1. **深度优先搜索(DFS)**2. **广度优先搜索(BFS)**3. **并查集(Union-Find)**我们将详细介绍这三种方法,并探讨它们的优缺点和实际应用场景。原创 2024-08-31 12:13:24 · 930 阅读 · 1 评论 -
图的遍历:深度优先搜索(DFS)和广度优先搜索(BFS)
在计算机科学中,图(Graph)是一种数据结构,由节点(也称为顶点)和连接这些节点的边组成。图可以用来表示各种关系,比如社交网络中的朋友关系、地图中的路径、网络中的设备连接等。无向图:图中的边没有方向,表示节点之间的关系是对称的。有向图:图中的边有方向,表示节点之间的关系是单向的。加权图:图中的边带有权重,表示连接两个节点的代价、距离或其他度量。无环图:图中没有形成环路。连通图:图中的任意两个节点之间都有路径相连。在解决图遍历问题时,DFS 和 BFS 是两种非常有用的搜索策略。原创 2024-08-29 17:47:55 · 4364 阅读 · 0 评论 -
深入理解二叉搜索树(BST)与节点查找:递归与迭代的多角度分析
二叉搜索树(Binary Search Tree, BST)左子树的节点值都小于根节点的值。右子树的节点值都大于根节点的值。由于这种有序性,BST 可以在查找、插入和删除操作时,快速决定要继续搜索的方向,从而大幅度降低操作时间。通过对二叉搜索树的特性深入理解,我们可以高效地查找指定节点并返回其子树。无论是递归还是迭代解法,都能够充分利用 BST 的有序性,使得查找过程在平均情况下非常高效。递归实现更为简洁,而迭代实现则在处理大规模数据时更为安全。原创 2024-08-26 14:23:00 · 787 阅读 · 0 评论 -
深入理解二叉树层级遍历与应用:从基础到进阶
二叉树的层级遍历不仅是数据结构中的一个基础概念,更是实际应用中的一个强大工具。通过理解其工作原理、数学分析及应用场景,我们可以更好地在复杂问题中应用BFS,并有效地利用层级信息来解决多种实际问题。希望这篇文章能帮助你深入理解二叉树层级遍历的精髓,掌握其在实际中的应用技巧。原创 2024-08-25 08:21:25 · 1094 阅读 · 0 评论 -
二叉树的右侧视图问题详解与解法【层序遍历、DFS】
层序遍历适合一次性解决问题,逻辑简单明了,适合新手学习。深度优先搜索方法可以在某些场景下更高效,特别是当需要优先访问右子树时。两种方法都能有效解决二叉树的右侧视图问题。选择哪种方法取决于具体需求和问题规模。希望这篇文章能帮助你深入理解二叉树的右侧视图问题以及如何使用不同的算法解决它。原创 2024-08-23 08:27:37 · 1081 阅读 · 0 评论 -
使用位运算快速计算二进制中 1 的个数【位运算】
位运算是在二进制层面上对数字进行的操作。每个数字在计算机中都以二进制表示,例如,十进制的数字5在二进制中表示为101。与运算 (:两个位都为1时结果为1,否则为0。或运算 (:只要有一个位为1,结果就是1,否则为0。异或运算 (:两个位不同结果为1,相同则为0。取反运算 (:将每个位的值反转,即1变00变1。左移 (:将二进制位向右移动,左边补0(无符号数)或符号位(有符号数)。逐位与运算法:适合理解基本的位运算原理,代码简单易懂,但效率相对较低。原创 2024-08-20 19:10:52 · 1650 阅读 · 0 评论 -
深度优先搜索:如何在二叉树中找出“好节点”【迭代法、状态管理技巧、DFS】
通过 DFS 遍历二叉树,实时跟踪当前路径的最大值来判断节点是否为“好节点”。递归与迭代两种方法各有优势,递归写法简洁直观,迭代写法则适用于避免递归栈溢出。理解如何在 DFS 中维护状态是解决二叉树类问题的关键。原创 2024-08-18 10:17:44 · 848 阅读 · 0 评论 -
一文搞懂二叉树遍历:原理、代码与实例解析【递归、迭代】
遍历二叉树是掌握二叉树结构的基础。前序遍历:适用于需要在访问节点时立即处理的情况,比如复制树结构。中序遍历:常用于需要按顺序访问节点的场景,比如在二叉搜索树中查找某个范围内的元素。后序遍历:通常用于需要在处理完所有子节点后才处理当前节点的情况,比如删除树。层次遍历:适合按层次处理树节点的问题,比如计算树的层数或查找某一层的所有节点。不同的遍历方式本质上是通过不同的顺序来访问树中的节点,理解这些遍历方式有助于更深入地理解二叉树的结构和操作。原创 2024-08-17 10:38:35 · 1869 阅读 · 0 评论 -
如何求解二叉树的最大深度问题【BFS、DFS】
递归法:通过分治思想解决问题,易于理解,但存在栈空间消耗。迭代法(BFS):通过队列层次遍历,空间复杂度较高但更为直观。理解这些方法及其背后的逻辑,对于深入掌握二叉树相关的算法问题有很大的帮助。希望通过这篇博客,你能够对二叉树的遍历和最大深度问题有更深入的理解。原创 2024-08-16 10:03:18 · 1084 阅读 · 0 评论 -
链表反转问题的三种解决方法:逐步深入解析【链表、多种方法】
反转链表问题的三种解法各有优劣,迭代法最为常用,递归法最为简洁,循环创建法适合特定需求。在实际应用中,我们通常优先选择迭代法,尤其是在需要处理大规模数据时,而递归法则适合在链表长度可控且代码简洁性优先的场合。进一步深入学习算法时,你会发现这些基本思想不仅仅适用于链表问题,还可以拓展到更多的场景和问题中。原创 2024-08-14 10:12:09 · 960 阅读 · 0 评论 -
链表的奇偶节点重新排列及空指针问题分析【链表、空指针】
链表的奇偶节点重新排列是一个经典的链表操作问题,旨在考察对链表操作顺序的理解与把握。通过正确处理指针的更新顺序,我们可以有效避免空指针异常,确保代码的健壮性。在实现过程中,务必注意链表节点之间的依赖关系,确保每一步操作都建立在正确的逻辑基础之上。原创 2024-08-13 10:01:33 · 464 阅读 · 0 评论 -
删除链表中的中间节点【链表、快慢指针、思路优化】
优点:这种方法的思路直观清晰,适合链表长度较短的情况。缺点:需要两次遍历链表,时间复杂度为 O(n),空间复杂度为 O(1)。通过详细解释,我们可以看到,整个删除中间节点的过程包括计算链表长度、找到中间节点,以及进行删除操作。prev指针帮助我们准确地找到中间节点的前一个节点,从而能够正确地重新连接链表并释放不再需要的节点内存。这种方法虽然直观且易于理解,但其劣势在于需要两次遍历链表,效率相对较低。而在处理较短链表时,这种方法仍然是非常实用的选择。对于删除链表中的中间节点问题,快慢指针法。原创 2024-08-12 10:41:34 · 832 阅读 · 0 评论 -
优化请求计数的队列方案(从暴力枚举到高效队列)【队列、数据结构】
暴力枚举的核心问题在于需要每次遍历整个数组,而实际上,许多旧请求在新请求到来时已经超出了 3000 毫秒的范围,不需要再参与统计。类,该类能够计算某个特定时间范围(过去的 3000 毫秒)内最近的请求数量。对于每个新的请求,我们记录其时间戳,并返回该时间戳之前 3000 毫秒内的请求总数。理解队列的应用场景并将其与实际问题相结合,是提升算法能力的重要一步。通过利用队列的特性,我们从最初的暴力枚举优化到了一个更高效的算法。最直观的解决方案是每次接收到一个新请求后,直接遍历存储的所有请求,判断它们是否在。原创 2024-08-10 17:58:01 · 510 阅读 · 0 评论 -
字符串解码:逐步解析与巧妙设计【字符串、栈】
通过这篇博客,我们深入了解了如何通过栈解决字符串解码问题。这个方法不仅高效,而且思路清晰,非常适合处理嵌套结构的编码问题。在实践中,这种栈和循环结合的方法还有许多应用场景,可以解决类似的复杂问题。希望这篇博客能帮助大家更好地理解和应用这一技巧。原创 2024-08-09 10:29:15 · 980 阅读 · 0 评论