
基础学科
文章平均质量分 93
修炼室
这个作者很懒,什么都没留下…
展开
-
切尔诺夫界:概率界限的精确利器
在概率论中,是一种强大的工具,它通过引入,能够为随机变量的大偏差概率提供更加精确的界限。相比于马尔科夫不等式和切比雪夫不等式,切尔诺夫界不仅利用了随机变量的分布信息,而且通过优化参数化的过程,显著收紧了界限,尤其在独立随机变量的场景下表现卓越。原创 2024-12-06 11:19:01 · 1724 阅读 · 0 评论 -
切比雪夫不等式:方差约束下的概率估计
在概率分析中,是一个常用的工具,它通过引入随机变量的,给出了偏离均值的概率界限。这一不等式是对的自然扩展,结合了更丰富的分布信息。通过它,我们可以更精确地描述随机变量的偏差行为。原创 2024-12-06 10:56:50 · 1448 阅读 · 0 评论 -
马尔科夫不等式扩展:非线性函数下的概率上界
马尔科夫不等式的扩展形式为我们提供了一种研究非线性变换后随机变量行为的工具。这种扩展形式非常灵活,适用于许多场景,比如分析平方、指数等变换后的随机变量。然而,与原始形式一样,这种方法提供的概率上界通常较宽松,因此常作为第一步的粗略估计。原创 2024-12-05 16:14:47 · 1147 阅读 · 0 评论 -
马尔科夫不等式:一个快速的概率上界工具
马尔科夫不等式是浓度不等式中最基础的一条。它的核心作用是:给一个非负随机变量的大偏差概率提供一个简单易用的上界。尽管它很“粗糙”,但因为对随机变量的要求很低,具有很广泛的应用场景。原创 2024-12-05 15:09:00 · 1351 阅读 · 0 评论 -
从函数变换到梯度分析(二):如何通过保持对称轴实现图像平缓化?
通过将函数转换为顶点式,并对系数进行变换,我们可以保持对称轴和顶点位置不变,同时改变图像的开口大小和形状。这种方法在数学分析中非常有用,特别是在处理对称性问题时。我们通过对前面的系数进行调整,使得图像在保持对称性的同时,能够变得更加平缓或陡峭。这种变换在实际应用中也具有广泛的应用。例如,在经济模型中,我们希望保持某个关键变量(如价格或利润)的平衡点不变,但希望调节其增长或下降的速度,这时就可以通过类似的方法进行调整和优化。原创 2024-10-18 07:28:05 · 1039 阅读 · 0 评论 -
从函数变换到梯度分析(一):如何通过自变量缩放实现图像与变化速度的调整?
通过函数变换和梯度分析,我们能够深入理解函数图像如何随变量变换而变化。本文的示例中,通过将xxx轴扩大两倍,我们看到函数图像变得更加平缓,这主要体现在导数值的减小上。无论是在数学研究还是实际应用中,梯度分析都是理解函数行为的关键工具。原创 2024-10-17 21:11:17 · 948 阅读 · 0 评论 -
利用泰勒展开推导有限差分法:计算函数导数的有效工具
有限差分法广泛应用于数值优化、物理仿真以及偏微分方程(PDE)的数值求解。前向差分和后向差分适用于时间步长较大或函数不对称的情境。中心差分则在高精度需求下更具优势。此外,有限差分法为数值微分提供了简单有效的手段,但也容易受到步长选择不当或函数波动的影响。理解其误差特性并合理选取步长hhh能够帮助我们在计算效率与精度之间找到平衡。通过本文,我们深入探讨了有限差分法的理论基础、误差分析以及如何实现它们。希望这些内容能够帮助你在数值分析领域中更好地理解和应用有限差分法。原创 2024-10-08 20:49:53 · 1342 阅读 · 0 评论 -
利用条件概率解决“两个孩子的性别问题”
通过这个经典的概率问题,我们能够更好地理解条件概率这一核心概念。条件概率不仅仅是对概率的一种重新计算,而是在已知一定条件的前提下对事件发生的可能性进行重新评估。这一原理应用广泛,不仅在数学中,在现实生活中的很多决策问题中也会出现类似的情境。原创 2024-10-05 14:57:14 · 1397 阅读 · 0 评论 -
高等数学(上)【基础学科、极限部分】
高等数学无非分为三个部分:`极限`、`导数(微分)`和`积分`——构成了**微积分**>高等数学学的就是 ==微积分==,整体其实只是一个**思想** + 一个**公式**(牛顿莱布尼茨公式)原创 2023-08-25 19:42:01 · 559 阅读 · 0 评论 -
函数的七大结论【总结,f(x),导数,积分】
f’(x)f(x)积分一定为奇函数偶函数只有一个奇函数一定为偶函数奇函数全部都是偶函数依旧以T为周期以T为周期只有在[0, T]上积分值为0,才以T为周期从中间的f(x)列开始开,左右推导。原创 2023-04-05 16:43:24 · 2272 阅读 · 0 评论 -
函数的四大特性【概念向 + 图片解释】
一、有界性二、单调性三、奇偶性(最重要的性质)常见表达式奇函数偶函数四、周期性神秘的数字0 和 1原创 2023-03-29 17:36:55 · 4927 阅读 · 0 评论 -
复合函数【结合例题】
复合函数是指两个函数组合起来的形式,通常表示为fgxf(g(x))fgx)),即一个函数fff的输入是另一个函数gxg(x)gx的输出。这种情况下,xxx先通过ggg进行计算,再把gxg(x)gx作为fff的输入。复合函数的定义域DDD,就是gxg(x)gx的值域。即fgxf(g(x))fgx))的定义域是所有xxx使得gxg(x)gx的输出在fff的定义域内。当x≥e2x \geq e^2x≥e2时,原创 2023-03-19 15:48:08 · 1084 阅读 · 0 评论 -
泰勒公式与极限问题:从基本原理到张宇“狗3定理”详解
张宇老师幽默地将三阶泰勒展开的应用称为“狗3定理”,即在处理极限问题时,通过三阶展开来简化计算,尤其是遇到sinx\sin xsinxcosx\cos xcosx等函数时。通过泰勒展开,我们可以快速识别高阶无穷小,从而高效求解极限。通过本文的分析,我们深入了解了泰勒公式在处理极限问题中的强大作用。尤其是在计算包含sinx\sin xsinx和cosx\cos xcosx等函数的极限时,使用泰勒展开可以快速得到近似解。原创 2023-03-15 17:55:54 · 3306 阅读 · 0 评论