逆序对数量【归并排序】

在前面我们有对归并排序进行讲解,现在我们结合一个其中的典型例题讲解。

题目描述

给定一个长度为 n 的整数数列,请你计算数列中的逆序对的数量。

逆序对的定义如下:对于数列的第 i 个和第 j 个元素,如果满足 i<ja[i]>a[j],则其为一个逆序对;否则不是。

问题分析

根据题目意思,也就是说当i <= j 时,出现了 a[i] > a[j]时,就说明出现了一个逆序对。

看到这个核心条件i <= jq[i] > q[j]貌似好像是和归并排序有点类似的。


我们来回忆一下归并排序的步骤:

1.平分区间

2.判断q[i] 和 q[j],若q[i] <= q[j],默认将i ++;否则将j++;(循环判断左半边i <= mid和右半边j <=r

3.神龙摆尾,直接将数组后面的数移入即可


结合这个题目,我们发现我们只需要在否则的处理里面,加上逆序对的计算接口。

进一步的,我们知道因为 归并排序能保证两个序列相对有序

也就是说,当q[i] > q[j]时,我们就可以直接将后面的数字个数添加进去

假设当前我们有以下序列

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KSyrNvIN-1679316587430)(assets/image-20230320201904-uhf7rgv.png)]

当left比较第一个时,第一个进入临时数据temp

然后进行i++,现在比较q[i] = 3 和 q[j] = 1

因为这里left序列后面都将会比1大,所以直接添加后面的个数——mid - i + 1


上面考虑的是较为复杂的情况(逆序对跨序列

情况二:全部在左侧

情况三:全部在右侧

代码模板

#include<iostream>

using namespace std;
typedef long long ll;

const int N = 1e6 + 8;
int n;
int q[N] , temp[N];

ll  merge_sort(int l , int r){
	if(l >= r ) return 0;

	int mid = l + r >> 1;

	int i = l , j = mid + 1 , k = 0;

	ll res = merge_sort(l , mid) + merge_sort(mid + 1 , r);

	while(i <= mid && j <= r){
		if(q[i] <= q[j]){
			temp[k ++] = q[i ++ ];
		}else{
			temp[k ++ ] = q[j ++ ];
			res += mid - i + 1;
		}
	}

	while(i <= mid ) temp[k ++] = q[i++];

	while(j <= r) temp[k ++ ] = q[j++];

	for(int i = l , j = 0 ; i <= r ; i ++ , j ++){
		q[i] = temp[j];
	}
	return res;
}

int main(){
	cin >> n;

	for(int i = 0 ; i < n ; i ++){
		cin >> q[i];
	}

	cout << merge_sort(0 , n - 1);

	return 0;
}

实现细节

long long

因为逆序对是不断叠加的,若原始数组为倒序序列。就可能会出现超出int的情况。

所以结果需要设置long long

并且为了方便定义,使用typedef进行新的别名

初始值res

在前面的情况讨论中,我们知道会有三种情况(全在左边 | 全在右边 | 一个在左边,一个在右边)

所以,我们就可以初始化res为 全在左边的值 + 全在右边的值

神龙摆尾(处理末尾状态)

	while(i <= mid ) temp[k ++] = q[i++];

	while(j <= r) temp[k ++ ] = q[j++];
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值