(二)算法工程师遇上大数据-Hadoop

本文深入介绍了Hadoop,一个用于大规模数据处理的开源框架,由Java编写。Hadoop包括HDFS和MapReduce核心组件,提供分布式存储和计算能力。适合大数据存储、日志分析、ETL、机器学习、搜索引擎和数据挖掘等场景。通过快速入门教程,读者可以了解Hadoop的基本概念和使用。
摘要由CSDN通过智能技术生成

系列文章目录

(一)算法工程师遇上大数据-Scala
(二)算法工程师遇上大数据-Hadoop
(三)算法工程师遇上大数据-Hive
(四)算法工程师遇上大数据-Zookeepr
(五)算法工程师遇上大数据-Flume
(六)算法工程师遇上大数据-Strom
(七)算法工程师遇上大数据-Kafka
(八)算法工程师遇上大数据-Spark
(九)算法工程师遇上大数据-Flink



在这里插入图片描述

前言

本文主要介绍HDFS之Hadoop。

一、介绍

Hadoop是由java语言编写的,在分布式服务器集群上存储海量数据并运行分布式分析应用的开源框架,其核心部件是HDFS与MapReduce。HDFS是一个分布式文件系统:引入存放文件元数据信息的服务器Namenode和实际存放数据的服务器Datanode,对数据进行分布式储存和读取。MapReduce是一个计算框架:MapReduce的核心思想是把计算任务分配给集群内的服务器里执行。通过对计算任务的拆分(Map计算/Reduce计算)再根据任务调度器(JobTracker)对任务进行分布式计算,擅长于:

     >> 大数据存储:分布式存储
     >> 日志处理:擅长日志分析
     >> ETL:数据抽取到oracle、mysql、DB2、mongdb及主流数据库
     >> 机器学习: 比如Apache Mahout项目
     >> 搜索引擎:Hadoop + lucene实现
     >> 数据挖掘:目前比较流行的广告推荐,个性化广告推荐
     >> Hadoop是专为离线和大规模数据分析而设计的,并不适合那种对几个记录随机读写的在线事务处理模式。


二、快速入门

1.快速入门

2.中文文档


三、总结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值