OpenAI 模型发展汇总

模型名称 发布时间 参数量 基本原理和训练方法 技术亮点(特色)
GPT-1 2018年6月 约1.17亿 使用了Transformer架构,通过大规模无监督学习预训练,然后在特定任务上进行微调。 - 首个将Transformer架构与无监督预训练结合的大型语言模型。
- 展示了强大的文本生成能力。
GPT-2 2019年2月 15亿 扩展了GPT-1的参数规模,采用了更大的数据集进行无监督预训练,提升了模型的表现力。 - 显著增强了文本生成的质量和多样性。
- 引入了更复杂的自然语言理解和生成任务的能力。
GPT-3 2020年6月 1750亿 进一步扩大了参数规模,使用了更多的训练数据,引入了上下文学习技术,使得模型能够在没有微调的情况下完成新任务。 - 参数量大幅提升,显著提高了自然语言理解和生成能力。
- 支持广泛的下游任务,如翻译、问答等。
- 引入了上下文学习(In-Context Learning)。
DALL·E 2021年1月 未公开具体参数量 结合了文本到图像生成的技术,采用了一种类似于GAN(生成对抗网络)的方法来生成图像,同时利用大量的图文对数据进行训练。 - 图像生成模型,能够根据文本描述创建逼真的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

进一步有进一步的欢喜

您的鼓励将是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值