Query理解:如何让机器读懂你的需求
扩展阅读(置顶)
1.原始信息再加工:一文读懂倒排索引
2.慧眼识词:解析TF-IDF工作原理
3.超越TF-IDF:信息检索之BM25
4.深入浅出 Beam Search:自然语言处理中的高效搜索利器
1. 引言
随着互联网的发展,电子商务平台每天都要处理数以亿计的用户查询。面对海量的商品数据,如何确保每次搜索都能返回最相关的结果,成为了提升用户体验的关键挑战之一。为此,我们需要一套完善的系统来理解和解析用户的查询,同时有效地索引和检索商品信息。
2. 构建倒排索引
2.1 商品预处理
首先,对所有商品描述进行预处理,包括分词、去除停用词、提取关键词等操作。例如,商品标题“Apple AirPods Pro - 真无线蓝牙耳机,带主动降噪功能”经过处理后可能得到["apple", "airpods", "pro", "真无线", "蓝牙", "耳机", "主动降噪"]
。
2.2 创建倒排索引条目
为每个词汇建立一个列表,记录该词汇出现在哪些商品中及其出现的位置或频率。假设我们有以下三个商品:
商品ID | 标题 |
---|---|
001 | Apple AirPods Pro |
002 | Sony WF-1000XM4 |
003 | Jabra Elite Active 75t |
对于词汇“apple”,其倒排索引条目可能是{"apple": [001]}
;对于“真无线”,则可能是{"真无线": [001, 002, 003]}
。
3. 查询解析与扩展
3.1 分词与词性标注
当用户输入查询“无线耳机”时,系统会先对其进行分词和词性标注,得到["无线", "耳机"]
。然后使用同义词库或预训练模型进行扩展,例如将“无线”扩展为“真无线”、“蓝牙”。
from transformers import BertTokenizer, BertModel
# 加载预训练模型和分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
model = BertModel.from_pretrained('bert-base-chinese')
def get_embedding(text):
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
# 取出最后一层的平均池化作为句子嵌入
sentence_embedding = outputs.last_hidden_state.mean(dim=1).squeeze()
return sentence_embedding.detach().numpy()
query_vector = get_embedding("无线耳机")
3.2 语义解析
使用预训练