目录
摘要
本文以四维向量为例,实践局部敏感哈希(LSH)技术,通过随机投影法将高维向量映射到低维空间,利用哈希桶聚集相似向量,再通过二进制码与汉明距离量化相似度(如近邻向量汉明距离仅1)。结合约翰逊-林登施特劳斯引理等数学原理,解析投影生成、分桶规则、代码实现及参数调优,展现LSH如何将高维数据相似性搜索复杂度从 O ( N ) O(N)
本文以四维向量为例,实践局部敏感哈希(LSH)技术,通过随机投影法将高维向量映射到低维空间,利用哈希桶聚集相似向量,再通过二进制码与汉明距离量化相似度(如近邻向量汉明距离仅1)。结合约翰逊-林登施特劳斯引理等数学原理,解析投影生成、分桶规则、代码实现及参数调优,展现LSH如何将高维数据相似性搜索复杂度从 O ( N ) O(N)