长期行为序列建模技术演进:从SIM到TWIN-v2

背景

在推荐系统与广告投放领域,长期行为序列建模旨在从用户数月甚至数年的历史行为中捕捉稳定兴趣模式,是解决冷启动、提升推荐精度的关键。随着工业界需求激增,SIM、ETA、SDIM、TWIN及TWIN-v2等模型相继诞生,推动技术不断革新。以下将按序深入解析这些模型的原理、创新及实践意义。

一、SIM:两阶段检索的奠基者

在这里插入图片描述

SIM 由阿里团队提出,首次将两阶段范式引入长序列建模,解决传统模型无法处理超长序列的难题,论文参考: Search-based User Interest Modeling with Lifelong Sequential
Behavior Data for Click-Through Rate Prediction

  • 核心架构
    • GSU阶段(通用搜索单元):提出两种检索方案。
      • Hard-Search:基于类目ID规则筛选
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

进一步有进一步的欢喜

您的鼓励将是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值