背景
在推荐系统与广告投放领域,长期行为序列建模旨在从用户数月甚至数年的历史行为中捕捉稳定兴趣模式,是解决冷启动、提升推荐精度的关键。随着工业界需求激增,SIM、ETA、SDIM、TWIN及TWIN-v2等模型相继诞生,推动技术不断革新。以下将按序深入解析这些模型的原理、创新及实践意义。
一、SIM:两阶段检索的奠基者
SIM 由阿里团队提出,首次将两阶段范式引入长序列建模,解决传统模型无法处理超长序列的难题,论文参考: Search-based User Interest Modeling with Lifelong Sequential
Behavior Data for Click-Through Rate Prediction
- 核心架构:
- GSU阶段(通用搜索单元):提出两种检索方案。
- Hard-Search:基于类目ID规则筛选
- GSU阶段(通用搜索单元):提出两种检索方案。