python-pptx库处理ppt代码示例

python-pptx模块是一个Python库,用于创建和更新Microsoft PowerPoint (.pptx)文件。

  • 官网地址:https://python-pptx.readthedocs.io/en/latest/
  • GITHUB: https://github.com/scanny/python-pptx
  • PYPI: https://pypi.org/project/python-pptx

安装python-pptx第三方扩展

pip install python-pptx

一、 读取pptx中的内容

1.1 PPT的结构说明

在使用python操作PPT之前,首先应该清楚PPT的结构,这个对于之后代码的编写很有帮助。

在这里插入图片描述

1.2 PPTX提取演示文稿内容

我们可以使用Presentation()函数获取一个PPTX文件:

from pptx import Presentation

prs = Presentation("CEMS架构和中间件.pptx")

Presentation.slides获取获取所有幻灯片,文档共有27页,有27个slide


print(len(prs.slides))
for slide in prs.slides:
    print(slide)

在这里插入图片描述
获取形状shape

# 输出第2张幻灯片的shapes 共有3个shape,标题,左侧图片,右侧文本
shapes = prs.slides[1].shapes
len(shapes),shapes
# 输出结果
(3, <pptx.shapes.shapetree.SlideShapes at 0x20c08052390>)

文本内容提取,has_text进行判断,也可通过MSO_SHAPE_TYPE判断


from pptx.enum.shapes import MSO_SHAPE_TYPE


for shape in shapes:
  if shape.has_text_frame:
      text_frame = shape.text_frame
      print(text_frame.text)
  
   # 也可以通过下面这种方式,更好判断每个shape的类型       
  if shape.shape_type ==  MSO_SHAPE_TYPE.TEXT_BOX:
      text_frame = shape.text_frame
      print(text_frame.text)

读取到ppt内容并输出
在这里插入图片描述

获取Shape中的某个Paragraph段落

text_frame = shape.text_frame

for paragraph in text_frame.paragraphs:
    print(paragraph.text)

在这里插入图片描述
显示第二张幻灯片的图片内容,这里用到了cv2,numpy,matplotlib

pip install numpy
pip install opencv-python
pip install matplotlib
import cv2
import numpy as np
import matplotlib.pyplot as plt

shape = shapes[1]

if shape.shape_type == MSO_SHAPE_TYPE.PICTURE:
    # shape.image.blob获取图片的blog信息
    # 通过numpy的frombuffer转化
    data = np.frombuffer(shape.image.blob,dtype=np.uint8)
    # 将blob转换为图像
    img = cv2.imdecode(data, cv2.IMREAD_COLOR)
    plt.imshow(img)     

在这里插入图片描述

二、 创建新pptx文件

2.1 PPT基本概念介绍

  • 幻灯片模板及占位符的概念
    在这里插入图片描述
  • 什么是版式
    我们在新增一页幻灯片的时候,会提示我们选择版式。pptx库中的slide_layouts列表数量和power point基础版式数量对应,格式对应。比如6为空模版,7为左侧图形,右侧文本的版式。
    在这里插入图片描述
    prs.slide_layouts[]传入0表示是第一个版式,传入1表示第二个版式,以此类推一直到结束48。

2.2 PPTX创建新的演示文稿代码


from pptx import Presentation

prs = Presentation()

#布局样式0-47
layout = prs.slide_layouts[0]

# 添加第一页幻灯片
slide = prs.slides.add_slide(layout)

title = slide.shapes.title

title.text = "这是第一个幻灯片"

subtitle = slide.placeholders[1]
subtitle.text = "正文框"

# 添加第2个幻灯片
layout = prs.slide_layouts[1]
slide = prs.slides.add_slide(layout)

title = slide.shapes.title
title.text = "这是第二个幻灯片"

body = slide.placeholders
body[1].text = "第二行正文"


# 添加第3个幻灯片
layout = prs.slide_layouts[2]
slide = prs.slides.add_slide(layout)
body = slide.placeholders
body[0].text = "这是第三个幻灯片"
body[1].text = "第三行正文"

prs.save("new.pptx")

在这里插入图片描述

通过段落添加内容,并设置相应样式


from pptx import Presentation
from pptx.util import Pt
from pptx.enum.text import PP_ALIGN


prs = Presentation()

#布局样式0-47
layout = prs.slide_layouts[0]
slide = prs.slides.add_slide(layout)
#每个layout中仅有2个占位符
body = slide.placeholders

body[0].text = "这是一个正文"
body[1].text = "第二行正文"

# 正文部分增加段落
paragraph = body[1].text_frame.add_paragraph()
paragraph.text ="要么做一个优秀的人,要么做一个懂事的人," \
                "要在这世上混,没一点本事和能力还真不行的。"
# 左对齐
paragraph.alignment = PP_ALIGN.LEFT
# 粗体
paragraph.font.bold =  True
# 斜体
paragraph.font.itatic =  True
# 字体大小
paragraph.font.size =  Pt(15)
# 下划线
paragraph.font.underline = True

prs.save('shape.pptx')

在这里插入图片描述

2.3 通过母版批量生成

通过母版进行批量生成,新创建一个tpl.pptx的文件,格式如下:

在这里插入图片描述
这样我们通过爬虫,数据库等数据源获取数据,通过模版生成ppt格式,连同数据和格式写入最终ppt中了。


from pptx import Presentation

prs = Presentation('tpl.pptx')

bzs = [
        {"title":"标题1","img":r"E:\美女照片\4K动态壁纸\4K动态壁纸 (1).png","content":"壁纸3"},
        {"title":"标题2","img":r"E:\美女照片\4K动态壁纸\4K动态壁纸 (2).png","content":"壁纸3"}
       ]

for bz in bzs:
    tpl_num = len(prs.slide_layouts)
    # 上面的板式是7
    slide = prs.slides.add_slide(prs.slide_layouts[7])
    body = slide.shapes.placeholders
    for index,shape in enumerate(body):
        if index == 0:
            shape.text = bz["title"]
        if index == 1:
            shape.insert_picture(bz['img'])
        if index == 2:
            shape.text = bz["content"]
            
# 保存壁纸的ppts            
prs.save("bz.pptx")

在这里插入图片描述
在这里插入图片描述

### Informer模型架构解析 Informer是一种专门针对长时间序列预测优化的Transformer变体。该模型通过引入一系列创新机制来解决传统Transformer在处理极长序列时遇到的记忆瓶颈和计算复杂度问题。 #### 架构核心组件 1. **编码器-解码器框架** 编码器接收输入的时间序列数据并将其转换成高维特征表示。对于解码器而言,其输入可以表示为 \( X_{\text{de}} = \{ X_{\text{token}}, X_0 \} \)[^1]。其中\( X_{\text{token}} \in \mathbb{R}^{L_{\text{token}} \times d_{\text{model}}} \),代表已知的历史观测值;而\( X_0 \in \mathbb{R}^{L_y \times d_{\text{model}}} \)则是待预测部分的位置预留向量,在初始阶段通常被零填充。 2. **概率稀疏自注意力机制 (ProbSparse Self-Attention)** 这一特性允许模型仅关注最有可能影响当前输出位置的关键历史点,从而大大减少了不必要的计算开销。具体来说,相比于标准自注意力层中的全连接矩阵运算,这里只保留了一小部分权重较大的条目参与后续计算过程。 3. **生成式解码策略** 不同于传统的基于循环神经网络(RNNs)的方法逐个生成未来时刻的数据点,Informer采用一次性输出整个预测区间的方式完成最终的结果呈现。这种方式不仅提高了效率还增强了稳定性。 4. **轻量化卷积模块(Lightweight Convolution Module)** 为了进一步提升性能表现,特别是在面对非常规间隔采样的情况下,研究者们还在原有基础上加入了轻量级的一维卷积操作作为辅助工具。这有助于捕捉局部模式的同时保持较低的参数规模。 虽然无法直接提供具体的图形化展示,但从上述描述可以看出,Informer的整体设计思路围绕着如何有效应对超长依赖关系展开了一系列针对性改进措施。这些改动共同作用使得即使是在极端条件下也能维持较高的预报准确性。 ```mermaid graph TB; A[Input Sequence] --> B(Encoder); C[Prediction Placeholder] --> D(Decoder); E[Encoded Features] ---| attends to | F(ProbSparse Attention Layer); G[Lightweight Convolutions] -.-> H(Final Output Prediction); I[Decoded Outputs] --> J(Output Sequence); ``` 此Mermaid图表简单示意了Informer的工作流程,包括输入序列经过编码器转化为内部表征形式、再由带有概率稀疏注意机制的解码器结合先验信息得出最后的预测结果这一系列步骤。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老朱2000

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值