《Tensorflow 实战google深度学习框架》第二版 的 程序源代码存放地址

书籍资源链接 专栏收录该内容
1 篇文章 0 订阅
  • 9
    点赞
  • 3
    评论
  • 15
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

Tensorflow实战Google深度学习框架》为使用TensorFlow深度学习框架的入门参考书,旨在帮助读者以最快、最有效的方式上手TensorFlow深度学习。 书中省略了深度学习繁琐的数学模型推导,从实际应用问题出发,通过具体的TensorFlow样例程序介绍如何使用深度学习解决这些问题。 《Tensorflow实战Google深度学习框架》包含了深度学习的入门知识和大量实践经验,是走进这个最新、最火的人工智能领域的首选参考书。 部分代码注释实例(如果是本问题,自行搜索解决很简单的): In [3]: import tensorflow as tf from numpy.random import RandomState 1. 定义神经网络的相关参数和变量。 In [4]: batch_size = 8 dataset_size = 128 x = tf.placeholder(tf.float32, shape=(None, 2), name="x-input") y_ = tf.placeholder(tf.float32, shape=(None, 1), name='y-input') w1= tf.Variable(tf.random_normal([2, 1], stddev=1, seed=1), trainable=True) y = tf.nn.tanh(tf.matmul(x, w1)) # y = tf.matmul(x, w1) 2. 设置自定义的损失函数。 In [5]: # 定义损失函数使得预测少了的损失大,于是模型应该偏向多的方向预测。 loss_less = 10 loss_more = 1 loss = tf.reduce_sum(tf.where(tf.greater(y, y_), (y - y_) * loss_more, (y_ - y) * loss_less)) train_step = tf.train.AdamOptimizer(0.001).minimize(loss) 3. 生成模拟数据集。 In [6]: rdm = RandomState(1) X = rdm.rand(dataset_size,2) Y = [[x1+x2+(rdm.rand()/10.0-0.05)] for (x1, x2) in X]
©️2020 CSDN 皮肤主题: 精致技术 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值