工作中最近用到了Google TensorFlow技术,Android端对相机预览图进行预处理,并加载tflite模型并推测运行结果。期间需要用到lite的so库等相关sdk,并自己实践编译了一下。
通过编译tensorflow源码生成tensorflowlite.jar 和 libtensorflowlite_jni.so库。
一、tensorflow源码
git clone https://github.com/tensorflow/tensorflow.git
二、编译环境和工具
1、Bazel编译工具:https://docs.bazel.build/versions/master/install-ubuntu.html.
官网有详细介绍如何在Ubuntu下载和安装Bazel流程,按照步骤操作即可。
2、Python 3,tensorflow configure需要用到Python。
3、OpenJDK 11(与Ubuntu 18.04.5需对应)
4、Android NDK & CMake:可直接在Android Studio的SDK Manager中直接勾选并下载NDK,、CMake、SDK Build-Tools工具。
三、编译过程
tensorflow源码中包括很多目录,我们只需关注编译tensorflow lite即可。
进到tensorflow-master源码根目录输入命令 ./configure后会弹出一系列选项提示去选择y/N,
比如Python安装目录,是否支持CUDA等。一般选择N或者填入default选项。
当提示是否希望为Android 构建交互配置 ./WORKSPACE的时候需要则输入y
编译TensorFlow Lite for Android

本文介绍如何从源码编译TensorFlow Lite for Android,包括所需环境搭建、编译工具选择及具体步骤。适用于希望在Android设备上部署机器学习模型的开发者。
最低0.47元/天 解锁文章
3418

被折叠的 条评论
为什么被折叠?



