标题:213. 打家劫舍 II
难度:中等
天数:第3天,第2/3题
你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。
给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。
示例 1:
输入:nums = [2,3,2]
输出:3
解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。
示例 2:
输入:nums = [1,2,3,1]
输出:4
解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
示例 3:
输入:nums = [0]
输出:0
提示:
1 <= nums.length <= 100
0 <= nums[i] <= 1000
来源:力扣(LeetCode)
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路:
- 198.打家劫舍升级版
- 这里加了一个限制条件,偷第一家,就不能偷第二家,我们创建两个数组,分别记录偷第一家,和不偷第一家。
//偷第一家
int[][] dpFirst = new int[m][2];
//偷
dpFirst[0][0]= nums[0];
//不偷
dpFirst[0][1] = 0;
//不偷第一家
int[][] dpEnd = new int[m][2];
//偷
dpEnd[1][0] = nums[1];
//不偷
dpEnd[1][1] = 0;
- 计算方式也一样,偷第一家时,循环到m-1前一位结束
//偷第一家
for(int i = 1; i < m-1 ; i++){
dpFirst[i][0] = dpFirst[i-1][1] + nums[i];
dpFirst[i][1] = Math.max(dpFirst[i-1][0],dpFirst[i-1][1]);
}
- 不偷第一家开始位置从第三个开始
//不偷第一家
for(int i = 2; i < m ; i++){
dpEnd[i][0] = dpEnd[i-1][1] + nums[i];
dpEnd[i][1] = Math.max(dpEnd[i-1][0],dpEnd[i-1][1]);
}
- 最后计算两种情况的最大值
//偷第一家最大值
int maxFirst = Math.max(dpFirst[m-2][0],dpFirst[m-2][1]);
//不偷第一家最大值
int maxEnd = Math.max(dpEnd[m-1][0],dpEnd[m-1][1]);
完整代码:
class Solution {
//动态规划问题 第3天 2/3
public int rob(int[] nums) {
int m = nums.length;
//只有一家时处理
if(m == 1){
return nums[0];
}
//只有两家时处理
if(m == 2){
return Math.max(nums[0],nums[1]);
}
//偷第一家
int[][] dpFirst = new int[m][2];
//偷
dpFirst[0][0]= nums[0];
//不偷
dpFirst[0][1] = 0;
//不偷第一家
int[][] dpEnd = new int[m][2];
//偷
dpEnd[1][0] = nums[1];
//不偷
dpEnd[1][1] = 0;
//偷第一家
for(int i = 1; i < m-1 ; i++){
dpFirst[i][0] = dpFirst[i-1][1] + nums[i];
dpFirst[i][1] = Math.max(dpFirst[i-1][0],dpFirst[i-1][1]);
}
//不偷第一家
for(int i = 2; i < m ; i++){
dpEnd[i][0] = dpEnd[i-1][1] + nums[i];
dpEnd[i][1] = Math.max(dpEnd[i-1][0],dpEnd[i-1][1]);
}
//偷第一家最大值
int maxFirst = Math.max(dpFirst[m-2][0],dpFirst[m-2][1]);
//不偷第一家最大值
int maxEnd = Math.max(dpEnd[m-1][0],dpEnd[m-1][1]);
return Math.max(maxFirst,maxEnd);
}
}