问题描述
小明正在玩一个“翻硬币”的游戏。
桌上放着排成一排的若干硬币。我们用 * 表示正面,用 o 表示反面(是小写字母,不是零)。
比如,可能情形是:**oo***oooo
如果同时翻转左边的两个硬币,则变为:oooo***oooo
现在小明的问题是:如果已知了初始状态和要达到的目标状态,每次只能同时翻转相邻的两个硬币,那么对特定的局面,最少要翻动多少次呢?
我们约定:把翻动相邻的两个硬币叫做一步操作,那么要求:
输入格式
两行等长的字符串,分别表示初始状态和要达到的目标状态。每行的长度<1000
输出格式
一个整数,表示最小操作步数。
样例输入1
o****o****
样例输出1
5
样例输入2
o**o***o**
o***o**o**
样例输出2
1
代码:
#include <iostream>
using namespace std;
char s1[1024];
char s2[1024];
bool trek[1024];
int main(){
cin>>s1>>s2;
int len = strlen(s1),count=0;
for(int i=0;i<len;i++){
if(s1[i]==s2[i])
trek[i] = false;
else {
trek[i] = true;
count++;
}
}
if(count%2!=0){
cout<<"无解"<<endl;
return 0;
}
int flag=-1,ans=0;
for(i=0;i<len;i++){
if(trek[i]){
if(flag==-1){ //当时这里写成了if(!flag)果断结果出错,那个意思是不等于0
flag =i;
}
else{
ans = ans+i-flag;
flag = -1;
}
}
}
cout<<ans<<endl;
return 0;
}