直接在QT pro文件里面加上
CONFIG(release,debug|release)
{
LIBS += D:\OpenCv\opencv\build\x86\vc12\lib\opencv_calib3d2410.lib \
D:\OpenCv\opencv\build\x64\vc12\lib\opencv_contrib2410.lib \
D:\OpenCv\opencv\build\x64\vc12\lib\opencv_core2410.lib \
D:\OpenCv\opencv\build\x64\vc12\lib\opencv_features2d2410.lib \
D:\OpenCv\opencv\build\x64\vc12\lib\opencv_flann2410.lib \
D:\OpenCv\opencv\build\x64\vc12\lib\opencv_gpu2410.lib \
D:\OpenCv\opencv\build\x64\vc12\lib\opencv_highgui2410.lib \
D:\OpenCv\opencv\build\x64\vc12\lib\opencv_imgproc2410.lib \
D:\OpenCv\opencv\build\x64\vc12\lib\opencv_legacy2410.lib \
D:\OpenCv\opencv\build\x64\vc12\lib\opencv_ml2410.lib \
D:\OpenCv\opencv\build\x64\vc12\lib\opencv_objdetect2410.lib \
D:\OpenCv\opencv\build\x64\vc12\lib\opencv_ts2410.lib \
D:\OpenCv\opencv\build\x64\vc12\lib\opencv_video2410.lib
}
CONFIG(debug,debug|release)
{
LIBS +=D:\OpenCv\opencv\build\x86\vc12\lib\opencv_calib3d2410d.lib \
D:\OpenCv\opencv\build\x64\vc12\lib\opencv_contrib2410d.lib \
D:\OpenCv\opencv\build\x64\vc12\lib\opencv_core2410d.lib \
D:\OpenCv\opencv\build\x64\vc12\lib\opencv_features2d2410d.lib \
D:\OpenCv\opencv\build\x64\vc12\lib\opencv_flann2410d.lib \
D:\OpenCv\opencv\build\x64\vc12\lib\opencv_gpu2410d.lib \
D:\OpenCv\opencv\build\x64\vc12\lib\opencv_highgui2410d.lib \
D:\OpenCv\opencv\build\x64\vc12\lib\opencv_imgproc2410d.lib \
D:\OpenCv\opencv\build\x64\vc12\lib\opencv_legacy2410d.lib \
D:\OpenCv\opencv\build\x64\vc12\lib\opencv_ml2410d.lib \
D:\OpenCv\opencv\build\x64\vc12\lib\opencv_objdetect2410d.lib \
D:\OpenCv\opencv\build\x64\vc12\lib\opencv_ts2410d.lib \
D:\OpenCv\opencv\build\x64\vc12\lib\opencv_video2410d.lib
}
我这么写是因为我的计算机是64位的。
实验源码如下:
#include "mainwindow.h"#include <QApplication>#include <opencv2/highgui/highgui.hpp>#include <opencv2/imgproc/imgproc.hpp>#include <opencv2/core/core.hpp>#include <opencv2/objdetect/objdetect.hpp>#include <QDebug>using namespace cv;void detectAndDraw( Mat& img, CascadeClassifier& cascade,CascadeClassifier& nestedCascade,double scale, bool tryflip );int main(int argc, char *argv[]){VideoCapture cap(0); //打开默认摄像头if(!cap.isOpened()){
return -1;}
Mat frame;Mat edges;CascadeClassifier cascade, nestedCascade;bool stop = false;//训练好的文件名称,放置在可执行文件同目录下cascade.load("haarcascade_frontalface_alt.xml");nestedCascade.load("haarcascade_eye_tree_eyeglasses.xml");while(!stop){
cap>>frame;
detectAndDraw( frame, cascade, nestedCascade,2,0 );if(waitKey(30) >=0)stop = true;}
return 0;}void detectAndDraw( Mat& img, CascadeClassifier& cascade,CascadeClassifier& nestedCascade,double scale, bool tryflip ){int i = 0;double t = 0;//建立用于存放人脸的向量容器vector<Rect> faces, faces2;//定义一些颜色,用来标示不同的人脸const static Scalar colors[] = { CV_RGB(0,0,255),CV_RGB(0,128,255),CV_RGB(0,255,255),CV_RGB(0,255,0),CV_RGB(255,128,0),CV_RGB(255,255,0),CV_RGB(255,0,0),CV_RGB(255,0,255)} ;//建立缩小的图片,加快检测速度//nt cvRound (double value) 对一个double型的数进行四舍五入,并返回一个整型数!Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );//转成灰度图像,Harr特征基于灰度图cvtColor( img, gray, CV_BGR2GRAY );//改变图像大小,使用双线性差值resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );//变换后的图像进行直方图均值化处理equalizeHist( smallImg, smallImg );//程序开始和结束插入此函数获取时间,经过计算求得算法执行时间t = (double)cvGetTickCount();//检测人脸//detectMultiScale函数中smallImg表示的是要检测的输入图像为smallImg,faces表示检测到的人脸目标序列,1.1表示//每次图像尺寸减小的比例为1.1,2表示每一个目标至少要被检测到3次才算是真的目标(因为周围的像素和不同的窗口大//小都可以检测到人脸),CV_HAAR_SCALE_IMAGE表示不是缩放分类器来检测,而是缩放图像,Size(30, 30)为目标的//最小最大尺寸cascade.detectMultiScale( smallImg, faces,1.1, 2, 0//|CV_HAAR_FIND_BIGGEST_OBJECT//|CV_HAAR_DO_ROUGH_SEARCH|CV_HAAR_SCALE_IMAGE,
Size(30, 30));//如果使能,翻转图像继续检测if( tryflip ){
flip(smallImg, smallImg, 1);cascade.detectMultiScale( smallImg, faces2,1.1, 2, 0//|CV_HAAR_FIND_BIGGEST_OBJECT//|CV_HAAR_DO_ROUGH_SEARCH|CV_HAAR_SCALE_IMAGE,
Size(30, 30) );for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ ){
faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));}
}
t = (double)cvGetTickCount() - t;// qDebug( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ ){
Mat smallImgROI;vector<Rect> nestedObjects;Point center;Scalar color = colors[i%8];int radius;double aspect_ratio = (double)r->width/r->height;if( 0.75 < aspect_ratio && aspect_ratio < 1.3 ){
//标示人脸时在缩小之前的图像上标示,所以这里根据缩放比例换算回去center.x = cvRound((r->x + r->width*0.5)*scale);center.y = cvRound((r->y + r->height*0.5)*scale);radius = cvRound((r->width + r->height)*0.25*scale);circle( img, center, radius, color, 3, 8, 0 );}
elserectangle( img, cvPoint(cvRound(r->x*scale), cvRound(r->y*scale)),cvPoint(cvRound((r->x + r->width-1)*scale), cvRound((r->y + r->height-1)*scale)),color, 3, 8, 0);if( nestedCascade.empty() )continue;smallImgROI = smallImg(*r);//同样方法检测人眼nestedCascade.detectMultiScale( smallImgROI, nestedObjects,1.1, 2, 0//|CV_HAAR_FIND_BIGGEST_OBJECT//|CV_HAAR_DO_ROUGH_SEARCH//|CV_HAAR_DO_CANNY_PRUNING|CV_HAAR_SCALE_IMAGE,
Size(30, 30) );for( vector<Rect>::const_iterator nr = nestedObjects.begin(); nr != nestedObjects.end(); nr++ ){
center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale);center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale);radius = cvRound((nr->width + nr->height)*0.25*scale);circle( img, center, radius, color, 3, 8, 0 );}
}
cv::imshow( "result", img );}