1.前言
目前“以图搜图”的引擎越来越多,可参考博文:
http://blog.csdn.net/forthcriminson/article/details/8698175
此篇博文中列出了很多“以图搜图”的引擎,之前很好奇他们是如何进行检索的,偶然间看到了一篇博客,上面说Google和Tineye主要利用的算法是感知哈希算法(Perceptual hash algorithm),它的作用是对每张图片生成一个"指纹"(fingerprint)字符串,然后比较不同图片的指纹。结果越接近,就说明图片越相似,里面介绍的原理也比较简单,正好目前也在做图像检索方面的课题,就用OpenCV实现了一下,供大家参考,本篇博文主要介绍如何通过OpenCV实现均值Hash和pHash算法,基本原理和流程会在代码的注释中详细说明。
2.均值Hash算法
-
- string HashValue(Mat &src)
- {
- string rst(64,'\0');
- Mat img;
- if(src.channels()==3)
- cvtColor(src,img,CV_BGR2GRAY);
- else
- img=src.clone();
-
-
-
- resize(img,img,Size(8,8));
-
-
-
- uchar *pData;
- for(int i=0;i<img.rows;i++)
- {
- pData = img.ptr<uchar>(i);
- for(int j=0;j<img.cols;j++)
- {
- pData[j]=pData[j]/4; }
- }
-
-
-
- int average = mean(img).val[0];
-
-
-
- Mat mask= (img>=(uchar)average);
-
-
- int index = 0;
- for(int i=0;i<mask.rows;i++)
- {
- pData = mask.ptr<uchar>(i);
- for(int j=0;j<mask.cols;j++)
- {
- if(pData[j]==0)
- rst[index++]='0';
- else
- rst[index++]='1';
- }
- }
- return rst;
- }
3. pHash算法
-
- string pHashValue(Mat &src)
- {
- Mat img ,dst;
- string rst(64,'\0');
- double dIdex[64];
- double mean = 0.0;
- int k = 0;
- if(src.channels()==3)
- {
- cvtColor(src,src,CV_BGR2GRAY);
- img = Mat_<double>(src);
- }
- else
- {
- img = Mat_<double>(src);
- }
-
-
- resize(img, img, Size(8,8));
-
-
- dct(img, dst);
-
-
- for (int i = 0; i < 8; ++i) {
- for (int j = 0; j < 8; ++j)
- {
- dIdex[k] = dst.at<double>(i, j);
- mean += dst.at<double>(i, j)/64;
- ++k;
- }
- }
-
-
- for (int i =0;i<64;++i)
- {
- if (dIdex[i]>=mean)
- {
- rst[i]='1';
- }
- else
- {
- rst[i]='0';
- }
- }
- return rst;
- }
4.汉明距离计算
通过上面两段代码就可以计算出图像的Hash值,检索的时候一般采用汉明距离来进行判断两幅图像的相似性,一般情况下认为汉明距离小于5,就可以认为两幅图像时相似的。汉明具体计算实现:
-
- int HanmingDistance(string &str1,string &str2)
- {
- if((str1.size()!=64)||(str2.size()!=64))
- return -1;
- int difference = 0;
- for(int i=0;i<64;i++)
- {
- if(str1[i]!=str2[i])
- difference++;
- }
- return difference;
- }
5.算法性能测试
为了验证该算法的性能,我进行了一些简单的测试,发现非等比例的图像缩放对均值Hash算法的性能有很大影响,如我进行测试的图像时640*480的,当我将其缩放为100*100时,两幅图像之间的汉明距离为28,两幅图像的Hash值相差较大,这说明非等比例的图像缩放会会使得基于均值Hash算法的图像检索出现错误,而pHash算法则在计算汉明距离后为4,这说明pHash算法对尺度的变化的鲁棒性强于均值Hash算法。
接下来我又对其对旋转的鲁棒性进行了一定的测试,测试图像如下所示
img1 img2
img3 img4
均值Hash算法测试结果:
pHash算法测试结果:
从测试结果中可以看出无论是均值Hash算法还是pHash算法,对旋转都不具有鲁棒性,只是pHash算法相对来说好一些, 一个真正的可商用的“以图搜图”引擎, 仍然需要对其进行改进,类似于原文中说的一样,如果不对其进行改进,目前只能由于以缩略图查找原图的情况。
6.相关JAVA实现
均值Hash算法:http://blog.csdn.net/luoweifu/article/details/7733030
pHash算法:http://blog.csdn.net/luoweifu/article/details/8220992