Opencv中jpeg编码完整流程分析

本文分析了Opencv中jpeg的编码流程,希望能够在加速jpeg编码效率上获得一些启发

从Java层开始,Opencv 2.4.13中imencode函数封装在了Highgui类中,而3.0.0以后,Highgui类被取缔,相关编解码操作放在了ImgCodecs这个类里面估计是为了Java和C++保持统一风格吧。这里直接调用即可

Highgui.imencode(String ext, Mat img, MatOfByte buf)

Highgui.imencode(String ext, Mat img, MatOfByte buf, MatOfInt params)

以上可以通过MatOfInt可指定编码时相关参数

开始看到这个时,感觉很奇怪,为啥要用MatOfInt来指定参数呢???不用着急,我们接着往下看

以上两个函数分别对应的native方法如下

    // C++:  bool imencode(String ext, Mat img, vector_uchar& buf, vector_int params = std::vector<int>())

   private static native boolean imencode_0(String ext, long img_nativeObj, long buf_mat_nativeObj, long params_mat_nativeObj);

   private static native boolean imencode_1(String ext, long img_nativeObj, long buf_mat_nativeObj);
不难发现,Opencv还是遵循着以往的JNI风格,所有对象都只传递对象起始地址,并且对象可以通过该地址恢复对象所有信息,即存在以该地址为参数的构造函数

我们接着往下,看看JNI层的代码,这里以3.1.0为例,代码位于OPENCV_HOME/release/modules/java/imgcodecs.cpp中

JNIEXPORT jboolean JNICALL Java_org_opencv_imgcodecs_Imgcodecs_imencode_10 (JNIEnv*, jclass, jstring, jlong, jlong, jlong);

JNIEXPORT jboolean JNICALL Java_org_opencv_imgcodecs_Imgcodecs_imencode_10
  (JNIEnv* env, jclass , jstring ext, jlong img_nativeObj, jlong buf_mat_nativeObj, jlong params_mat_nativeObj)
{
    static const char method_name[] = "imgcodecs::imencode_10()";
    try {
        LOGD("%s", method_name);
        std::vector<uchar> buf;
        Mat& buf_mat = *((Mat*)buf_mat_nativeObj);
        std::vector<int> params;
        Mat& params_mat = *((Mat*)params_mat_nativeObj);
        Mat_to_vector_int( params_mat, params );
        const char* utf_ext = env->GetStringUTFChars(ext, 0); String n_ext( utf_ext ? utf_ext : "" ); env->ReleaseStringUTFChars(ext, utf_ext);
        Mat& img = *((Mat*)img_nativeObj);
        bool _retval_ = cv::imencode( n_ext, img, buf, params );
        vector_uchar_to_Mat( buf, buf_mat );
        return _retval_;
    } catch(const std::exception &e) {
        throwJavaException(env, &e, method_name);
    } catch (...) {
        throwJavaException(env, 0, method_name);
    }
    return 0;
}



JNIEXPORT jboolean JNICALL Java_org_opencv_imgcodecs_Imgcodecs_imencode_11 (JNIEnv*, jclass, jstring, jlong, jlong);

JNIEXPORT jboolean JNICALL Java_org_opencv_imgcodecs_Imgcodecs_imencode_11
  (JNIEnv* env, jclass , jstring ext, jlong img_nativeObj, jlong buf_mat_nativeObj)
{
    static const char method_name[] = "imgcodecs::imencode_11()";
    try {
        LOGD("%s", method_name);
        std::vector<uchar> buf;
        Mat& buf_mat = *((Mat*)buf_mat_nativeObj);
        const char* utf_ext = env->GetStringUTFChars(ext, 0); String n_ext( utf_ext ? utf_ext : "" ); env->ReleaseStringUTFChars(ext, utf_ext);
        Mat& img = *((Mat*)img_nativeObj);
        <span style="color:#FF0000;">bool _retval_ = cv::imencode( n_ext, img, buf );</span>
        vector_uchar_to_Mat( buf, buf_mat );
        return _retval_;
    } catch(const std::exception &e) {
        throwJavaException(env, &e, method_name);
    } catch (...) {
        throwJavaException(env, 0, method_name);
    }
    return 0;
}

以带参编译的方法为例,也就是imencode10(),首先从地址分别构造出原Java中的MatOfByte和ParamsMat两个Mat的数据结构,分别用于存储encode完的数据和相应传入的编码参数,接下来param_mat转换成了一个int的vector,我们跟进看下发现

void Mat_to_vector_int(Mat& mat, std::vector<int>& v_int)
{
    v_int.clear();
    CHECK_MAT(mat.type()==CV_32SC1 && mat.cols==1);
    v_int = (std::vector<int>) mat;
}

转换过程相当简单。。。其实这个原来Java中MatOfInt的类,存储的其实就是一系列的32为signed int的值而已。。。这些data是可以直接进行类型转换的

在Java层我们仅需要这样构建params参数即可

MatOfInt params = new MatOfInt(Imgcodecs.CV_IMWRITE_JPEG_QUALITY, 90);

对应的构造方法原型为
public MatOfInt(int...a)

我们接着回到正题,拿到编译参数以后,真正的编码调用的是cv::imencode,这个函数的实现是在imgcodes/src下面的loadsave.cpp中

bool imencode( const String& ext, InputArray _image,
               std::vector<uchar>& buf, const std::vector<int>& params )
{
    Mat image = _image.getMat();

    int channels = image.channels();
    CV_Assert( channels == 1 || channels == 3 || channels == 4 );

    ImageEncoder encoder = findEncoder( ext );
    if( !encoder )
        CV_Error( CV_StsError, "could not find encoder for the specified extension" );

    if( !encoder->isFormatSupported(image.depth()) )
    {
        CV_Assert( encoder->isFormatSupported(CV_8U) );
        Mat temp;
        image.convertTo(temp, CV_8U);
        image = temp;
    }

    bool code;
    if( encoder->setDestination(buf) )
    {
        code = encoder->write(image, params);
        encoder->throwOnEror();
        CV_Assert( code );
    }
    else
    {
        String filename = tempfile();
        code = encoder->setDestination(filename);
        CV_Assert( code );

        code = encoder->write(image, params);
        encoder->throwOnEror();
        CV_Assert( code );

        FILE* f = fopen( filename.c_str(), "rb" );
        CV_Assert(f != 0);
        fseek( f, 0, SEEK_END );
        long pos = ftell(f);
        buf.resize((size_t)pos);
        fseek( f, 0, SEEK_SET );
        buf.resize(fread( &buf[0], 1, buf.size(), f ));
        fclose(f);
        remove(filename.c_str());
    }
    return code;
}

整个imencode的流程如下,先检查图像的通道数,然后检查文件类型判断是否支持,每个像素点的单通道是否是8bit,接下来setDescription的逻辑也非常简单

bool BaseImageEncoder::setDestination( std::vector<uchar>& buf )
{
    if( !m_buf_supported )
        return false;
    m_buf = &buf;
    m_buf->clear();
    m_filename = String();
    return true;
}

如上,就是清空一下缓存区,接下来就进入了对应encoder的write函数,对应JpegEncoder的源码如下

bool JpegEncoder::write( const Mat& img, const std::vector<int>& params )
{
    m_last_error.clear();

    struct fileWrapper
    {
        FILE* f;

        fileWrapper() : f(0) {}
        ~fileWrapper() { if(f) fclose(f); }
    };
    volatile bool result = false;
    fileWrapper fw;
    int width = img.cols, height = img.rows;

    std::vector<uchar> out_buf(1 << 12);
    AutoBuffer<uchar> _buffer;
    uchar* buffer;

    struct jpeg_compress_struct cinfo;
    JpegErrorMgr jerr;
    JpegDestination dest;

    jpeg_create_compress(&cinfo);
    cinfo.err = jpeg_std_error(&jerr.pub);
    jerr.pub.error_exit = error_exit;

    if( !m_buf )
    {
        fw.f = fopen( m_filename.c_str(), "wb" );
        if( !fw.f )
            goto _exit_;
        jpeg_stdio_dest( &cinfo, fw.f );
    }
    else
    {
        dest.dst = m_buf;
        dest.buf = &out_buf;

        jpeg_buffer_dest( &cinfo, &dest );

        dest.pub.next_output_byte = &out_buf[0];
        dest.pub.free_in_buffer = out_buf.size();
    }

    if( setjmp( jerr.setjmp_buffer ) == 0 )
    {
        cinfo.image_width = width;
        cinfo.image_height = height;

        int _channels = img.channels();
        int channels = _channels > 1 ? 3 : 1;
        cinfo.input_components = channels;
        cinfo.in_color_space = channels > 1 ? JCS_RGB : JCS_GRAYSCALE;

        int quality = 95;
        int progressive = 0;
        int optimize = 0;
        int rst_interval = 0;
        int luma_quality = -1;
        int chroma_quality = -1;

        for( size_t i = 0; i < params.size(); i += 2 )
        {
            if( 
  • 3
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
爬虫(Web Crawler)是一种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据并存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫从一个或多个初始URL开始,递归或迭代地发现新的URL,构建一个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 爬虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python的Requests库。 解析内容: 爬虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助爬虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 爬虫将提取的数据存储到数据库、文件或其他存储介质,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反爬虫机制,爬虫需要遵守网站的robots.txt协议,限制访问频率和深度,并模拟人类访问行为,如设置User-Agent。 反爬虫应对: 由于爬虫的存在,一些网站采取了反爬虫措施,如验证码、IP封锁等。爬虫工程师需要设计相应的策略来应对这些挑战。 爬虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用爬虫需要遵守法律和伦理规范,尊重网站的使用政策,并确保对被访问网站的服务器负责。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值