目标检测环境搭建相关问题解决

本文详细介绍了如何使用Anaconda进行包管理和环境管理,包括列出已安装的包、安装与更新库、创建与激活环境、删除环境以及设置镜像源。此外,还提到了PyTorch的安装与CUDA版本匹配,以及解决conda环境创建时的镜像错误问题。通过参考提供的命令,读者可以更有效地管理自己的Anaconda环境。
摘要由CSDN通过智能技术生成

anaconda环境搭建

anaconda常见命令

包管理

# 列出当前环境下所有安装的 conda 包。
$ conda list
 
# 列举一个指定环境下的所有包
$ conda list -n env_name
 
# 查询库
$ conda search scrapys
 
# 安装库安装时可以指定版本例如:(scrapy=1.5.0)
$ conda install scrapy
 
# 为指定环境安装某个包
$ conda install --name target_env_name package_name
 
# 更新安装的库
$ conda update scrapy
 
# 更新指定环境某个包
$ conda update -n target_env_name package_name
 
# 更新所有包
$ conda update --all
 
# 删除已经安装的库也尅用(conda uninstall)
$ conda remove scrapy
 
# 删除指定环境某个包
$ conda remove -n target_env_name package_name
 
# 删除没有用的包
$ conda clean -p

环境管理

# 查看现有的环境
$ conda env list


# 创建环境,后面的python=3.6是指定python的版本
$ conda create --name env_name python=3.6
 
# 创建包含某些包的环境(也可以加上版本信息)
$ conda create --name env_name python=3.7 numpy scrapy
 
# 激活某个环境
$ activate env_name
 
# 关闭某个环境
$ conda deactivate
 
# 复制某个环境
$ conda create --name new_env_name --clone old_env_name
 
# 删除某个环境
$ conda remove --name env_name --all
 
# 生成需要分享环境的yml文件(需要在虚拟环境中执行)
$ conda env export > environment.yml
 
# 别人在自己本地使用yml文件创建虚拟环境
$ conda env create -f environment.yml

anaconda安装设置环境,参考

pytorch官网

相关操作步骤关于CUDA,参考

检验cuda和pytorch版本,运行一下代码

import torch
print(torch.cuda.is_available())
print(torch.backends.cudnn.is_available())
print(torch.cuda_version)
print(torch.backends.cudnn.version())

若出现false和none则安装失败,出现true和对应版本号

True
True
10.2
7605

cuda和cudnn环境匹配,详情  添加4条路径

环境创建,镜像出错问题:(若开了VPN,关了就行)

Collecting package metadata (current_repodata.json): failed

UnavailableInvalidChannel: The channel is not accessible or is invalid.
  channel name: simple
  channel url: https://pypi.tuna.tsinghua.edu.cn/simple
  error code: 404

You will need to adjust your conda configuration to proceed.
Use `conda config --show channels` to view your configuration's current state,
and use `conda config --show-sources` to view config file locations.

原因:

解决办法:恢复默认源

conda config --remove-key channels

修改镜像源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes

显示添加的源

conda config --show channels

参考

注意问题总结:

1.安装根据电脑硬件设备选择合适的cuda版本

2.pytorch在官网选版本是要注意cuda的版本,相互要匹配,pytorch下载有pip和conda两种。

pip是 Python 包管理工具,conda是一个开源的软件包管理系统和环境管理系统

3.不同的yolov5所要求的版本不一样,对应安装,pytorch-gpu对应版本有要求,若升级pytorch升级会导致代码运行gpu使用不了,这是需要卸载升级版本,重新pytorch官网重新安装,

注:pycharm一键安装所需库时默认最高版本。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值