一、研究背景与意义
1.1 双新改革对信息技术教育的新要求
随着教育改革的不断深入,“双新”(新课程、新教材)改革已成为基础教育领域的重要趋势。《普通高中信息技术课程标准(2020 年版)》的颁布,为高中信息技术教育指明了新的方向。该标准强调以学科核心素养培养为导向,要求课程设计从传统的知识传授模式向学生能力提升模式转变。这意味着信息技术教学不再仅仅关注学生对知识的记忆,更注重培养学生运用知识解决实际问题的能力,以及信息意识、计算思维、数字化学习与创新、信息社会责任等核心素养的全面发展。
在新教材的实施过程中,教师面临着内容整合的巨大挑战。新教材涵盖了丰富的内容,涉及 “数据与计算”“信息系统与社会” 等多个大概念,这些内容相互关联又具有一定的复杂性。传统的教学方式难以让学生深入理解这些大概念之间的联系,导致学生在知识的系统性掌握和应用上存在困难。因此,需要通过项目式学习等创新教学方法,重构课堂教学模式,帮助学生建立起知识之间的有机联系,实现对大概念的深度理解。
例如,在 “数据与计算” 模块中,学生不仅要学习数据的基本概念、编码方式,还要掌握编程计算的方法和数据分析的技能。通过项目式学习,教师可以设计一个 “校园数据分析” 项目,让学生从收集校园中的各类数据(如学生成绩、出勤情况、社团活动参与度等)入手,运用编程知识对数据进行处理和分析,最终得出有价值的结论并提出改进建议。在这个过程中,学生能够将数据的理论知识与实际应用相结合,深刻理解数据在解决现实问题中的作用,同时提升计算思维和数字化学习与创新能力。
1.2 人工智能教育的校本化实践需求
近年来,人工智能技术迅速发展,深刻改变了人们的生活和工作方式。这一技术变革对基础教育提出了新的挑战和机遇,培养具备人工智能素养的创新人才成为教育的重要任务。国家高度重视人工智能教育,《新一代人工智能发展规划》明确提出在中小学阶段逐步推广人工智能教育,将其纳入课程体系。
然而,国家课程在应对前沿技术发展时,往往存在一定的滞后性,难以完全满足学生对人工智能知识的学习需求。校本课程开发作为国家课程的重要补充,能够根据学校的实际情况和学生的特点,灵活地将前沿技术融入课程中,弥补国家课程在这方面的不足。通过开发人工智能校本课程,学校可以为学生提供更具针对性和时效性的学习内容,让学生在早期接触和了解人工智能技术,激发他们对科技的兴趣和探索欲望。
Python 作为一种广泛应用于人工智能领域的编程语言,具有简洁易读、功能强大等特点,非常适合作为高中学生学习人工智能的入门语言。将 Python 编程与 AI 技术融合,开展校本课程教学,能够帮助学生掌握基本的编程技能,培养计算思维,同时深入了解人工智能的原理和应用。例如,在课程中可以设计 “图像识别项目”,让学生使用 Python 语言和相关的 AI 库,如 OpenCV、TensorFlow 等,实现对图像中物体的识别和分类。学生通过完成这个项目,不仅能够学习到图像识别的基本原理和算法,还能亲身体验人工智能技术在实际应用中的强大功能,提高解决实际问题的能力和创新能力 。
二、理论框架与实施路径
2.1 项目式教学的理论基础
本研究基于建构主义与实用主义教育理论,构建了 “导、学、践、馈、思” 五环教学模式,旨在通过真实情境驱动,引导学生在项目实践中主动构建知识体系,提升解决实际问题的能力。
建构主义学习理论强调知识不是通过教师传授得到的,而是学习者在一定的情境即社会文化背景下,借助其他人(包括教师和学习伙伴)的帮助,利用必要的学习资料,通过意义建构的方式获得的 。在项目式教学中,学生不再是被动的知识接受者,而是主动的探索者。例如,在 “智能垃圾分类助手” 项目中,学生首先面临的是现实生活中垃圾分类的难题,这一真实情境激发了他们的学习兴趣和解决问题的欲望。在教师的引导下,学生通过查阅资料、小组讨论等方式,主动探索如何运用 Python 编程和人工智能技术来实现垃圾分类的智能化识别和分类指导,在这个过程中,学生不断地将新知识与已有的知识经验进行整合,从而构建起属于自己的知识体系。
实用主义教育理论则以经验为中心、以儿童为中心、以活动为中心,强调 “做中学”。在项目式学习中,学生通过完成一个个具体的项目任务,将所学知识应用于实践,在实践中积累经验,提高能力。以 “校园智能安防系统” 项目为例,学生在项目实施过程中,需要亲自动手收集校园安防相关的数据,运用 Python 编程设计算法,实现对异常行为的监测和预警。在这个过程中,学生不仅掌握了编程技能和人工智能知识,还学会了如何团队协作、如何解决实际问题,这些经验和能力将对他们今后的学习和生活产生深远的影响。
“导、学、践、馈、思” 五环教学模式正是基于上述理论基础构建而成。在 “导” 的环节,教师通过创设真实情境,提出具有挑战性的问题,引导学生明确项目目标和任务,激发学生的学习兴趣和探究欲望。例如,在 “智能农业监测系统” 项目中,教师可以展示当前农业生产中面临的问题,如农作物病虫害监测不及时、水资源浪费等,引发学生对如何利用技术解决这些问题的思考。在 “学” 的环节,学生根据项目需求,自主学习相关的知识和技能,包括 Python 编程语言、人工智能算法等。教师提供必要的学习资源和指导,帮助学生解决学习过程中遇到的问题。在 “践” 的环节,学生以小组为单位,运用所学知识和技能,开展项目实践,完成项目任务。在 “智能交通流量预测” 项目中,学生需要收集交通流量数据,运用数据分析和机器学习算法进行模型训练和预测,最终实现交通流量的可视化展示和预测结果的分析。在 “馈” 的环节,教师和学生对项目成果进行展示和评价,及时反馈项目实施过程中的优点和不足,为后续的改进提供依据。在 “思” 的环节,学生对项目实践过程进行反思,总结经验教训,进一步深化对知识的理解和应用,培养批判性思维和创新能力。
2.2 跨学科融合的课程设计
为了培养学生的综合素养,本研究将 Python 编程与人文、