最初在一个记事本上只有一个字符 ‘A’。你每次可以对这个记事本进行两种操作:
Copy All (复制全部) : 你可以复制这个记事本中的所有字符(部分的复制是不允许的)。
Paste (粘贴) : 你可以粘贴你上一次复制的字符。
给定一个数字 n 。你需要使用最少的操作次数,在记事本中打印出恰好 n 个 'A'。输出能够打印出 n 个 'A' 的最少操作次数。
示例 1:
输入: 3
输出: 3
解释:
最初, 我们只有一个字符 ‘A’。
第 1 步, 我们使用 Copy All 操作。
第 2 步, 我们使用 Paste 操作来获得 ‘AA’。
第 3 步, 我们使用 Paste 操作来获得 ‘AAA’。
注意: n 的取值范围是 [1, 1000] 。
方法一:如果 n 为素数,那么 op = n,
否则,求 乘积为 n 的所有素数 ,如 n = 15 , 3*5 =15, op = 3 + 5 ,问题转化为求素数。
class Solution(object):
def minSteps(self, n):
if n ==1:
return 0
return self.get_all_divprimers(n)
def get_all_divprimers(self, n):
res, i = [],2
while i <= int(pow(n,0.5)):
if n % i == 0:
res.append(i)
n , i = n/i, 2
else:
i+=1
res.append(n)
print(sum(res))
return sum(res)
**分析:想要减少操作数,我们就尽可能的一次复制较大长度的,但是注意,复制的这个长度值一旦增加,就无法变小,注意最后复制粘贴的构成的总长度恰好是n。所以,我们首先判断n 是不是质数,如果是,只能一个一个字符粘贴了,op 数 就是 n 。 如果不是,说明可以通过一个相对大的长度复制粘贴。
如 n = 9, 那么,9 可由 3粘贴三次得到。
class Solution(object):
def bigchu(self,s):
for i in range(2,int(s/2)):
if not s%i:
return i
return 0
def minSteps(self,n):
if n == 1:
return 0
sum = 0
chu = self.bigchu(n)
while n>4 and chu :
sum+=chu
n /=chu
chu = self.bigchu(n)
return sum+n