详解深度学习中模型提取的特征图在模型中传递的形式(第3种解释)

        在深度学习中,图像分割和分类任务通常依赖于一个称为“backbone”的卷积神经网络(CNN)来提取图像的特征。这些特征图(Feature Maps)是通过卷积层、激活层、池化层等一系列层次的处理过程在网络中以张量(Tensor)的形式传递的

张量(Tensor)的概念

        张量是一个数学或物理实体,广泛应用于深度学习中,表示数据的一种高维形式。在深度学习框架中(如TensorFlow或PyTorch),张量是基本的数据单位,可用来表示输入数据、模型的参数(如权重和偏置),以及中间层次的特征图。张量可以有多个维度,比如一个2维张量可以表示矩阵,一个3维张量可以用来表示一系列的图像,其中每一维分别代表图像的高度、宽度和颜色通道

特征图在Backbone中的传递

        在进行图像分割或分类时,原始图像首先被转换成一个张量,其维度通常是[Batch Size, Channels, Height, Width],其中“Batch Size”表示一次处理的图像数量,“Channels”表示颜色通道数(例如,对于RGB图像是3),“Height”和“Width”分别代表图像的高度和宽度

        这个输入张量随后被送入backbone网络。在网络的各个卷积层,通过应用一系列的过滤器(或称为卷积核)进行特征提取。每个过滤器都会在输入图像上滑动,计算过滤器与图像局部的点乘(dot product),从而产生新的特征图。随着数据通过网络的不同层,这些特征图的尺寸可能会因为卷积操作、池化操作而发生变化,但它们始终以张量的形式存在

        在特征提取过程中,激活函数(如ReLU)被应用于卷积操作的结果,以引入非线性,帮助网络学习复杂的模式。池化层(如最大池化)则用于降低特征图的空间维度,减少计算量,同时保留重要的特征信息

        对于图像分类任务,backbone网络最终会通过全连接层(或称为密集层)输出一个向量,表示不同类别的预测概率。而对于图像分割任务,特征图经过一系列上采样(或反卷积)操作和卷积操作,将特征图尺寸恢复至与输入图像相同或相似的尺寸,最终输出每个像素的类别预测。

结论

        总之,特征图确实是以张量的形式在深度学习中的backbone网络中传递的。这些张量通过网络的各个层进行传递和转换,使得模型能够学习从原始输入图像中提取复杂和抽象的特征,从而完成分类或分割任务。每一步的操作都是精心设计的,以确保信息有效地流动,并且最终的输出能够准确反映输入数据的特征

  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值