《雷达信号处理基础》Mark A. Rechards 读书笔记
——————————————————————
假设雷达静止,被检测物体处于运动状态,由于多普勒效应,接收回波的频率F_r不同于发射频率。
考虑一个单基雷达,波形x(t)被任意时变距离R(t)处的目标反射回雷达接收机。回波信号表示为
y
‾
(
t
)
=
−
k
⋅
[
1
−
2
h
˙
(
t
)
]
x
‾
[
2
h
(
t
)
−
t
]
\overline{y} (t) = -k\cdot[1-2\dot h(t)]\overline x[2h(t) -t]
y(t)=−k⋅[1−2h˙(t)]x[2h(t)−t]
其中k包含了所有雷达距离方程中与幅度有关的因子;
h
(
t
)
h(t)
h(t)表示时刻,雷达在h(t)时发射信号,
h
˙
(
t
)
\dot h(t)
h˙(t)表示对时间的导数。
h
(
t
)
h(t)
h(t)必须满足
h
(
t
)
+
1
c
R
[
h
(
t
)
]
=
t
h(t) + \frac{1}{c}R[h(t)] = t
h(t)+c1R[h(t)]=t
准静止假设,雷达传播速度很快,假设从雷达到目标的传播时间内,物体的运动的距离变化可以忽略不记,
R
(
h
(
t
)
)
≈
R
(
t
)
R(h(t)) \approx R(t)
R(h(t))≈R(t).
所以上式可以简化为
h
(
t
)
+
1
c
R
(
t
)
=
t
h(t) + \frac{1}{c}R(t) = t
h(t)+c1R(t)=t
将
h
(
t
)
h(t)
h(t)移到等式右边,代入
y
‾
(
t
)
\overline{y} (t)
y(t)得
h
(
t
)
=
t
−
1
c
R
(
t
)
h(t) = t-\frac{1}{c}R(t)
h(t)=t−c1R(t)
y
‾
(
t
)
=
−
k
⋅
[
2
R
˙
(
t
)
c
−
1
]
x
‾
[
t
−
2
R
(
t
)
c
]
\overline{y} (t) = -k\cdot[\frac{2\dot R(t)}{c}-1]\overline x[t-\frac{2R(t)}{c}]
y(t)=−k⋅[c2R˙(t)−1]x[t−c2R(t)]
R
˙
(
t
)
\dot R(t)
R˙(t)表示距离对时间的导数,即瞬时速度,其值远远小于光速c。因此,上式可以再简化为
y
‾
(
t
)
=
k
x
‾
[
t
−
2
R
(
t
)
c
]
\overline{y} (t) = k\overline x[t-\frac{2R(t)}{c}]
y(t)=kx[t−c2R(t)]
对于匀速直线运动的物体,
R
(
t
)
=
R
0
−
v
t
R(t) = R_0 -vt
R(t)=R0−vt, 令
β
v
=
v
/
c
\beta_v = v/c
βv=v/c, 那么
h
(
t
)
=
1
1
−
β
v
(
t
−
R
0
c
)
h(t) = \frac{1}{1-\beta_v}(t-\frac{R_0}{c})
h(t)=1−βv1(t−cR0)
[
1
−
h
˙
(
t
)
]
=
−
1
+
β
v
1
−
β
v
≡
−
α
v
[1-\dot h(t)] = -\frac{1+\beta _v}{1-\beta_v} \equiv -\alpha _v
[1−h˙(t)]=−1−βv1+βv≡−αv
于是有
y
‾
(
t
)
=
k
α
v
⋅
x
‾
(
α
v
(
t
−
2
R
0
(
1
+
β
v
)
c
)
)
\overline y (t) = k\alpha _v\cdot \overline x(\alpha _v(t-\frac{2R_0}{(1+\beta _v)c} ))
y(t)=kαv⋅x(αv(t−(1+βv)c2R0)).
当发射波形为
x
‾
(
t
)
=
A
(
t
)
e
x
p
[
j
(
2
π
F
t
t
+
ϕ
0
)
]
\overline x(t) = A(t)exp[j(2\pi F_t t+ \phi_0)]
x(t)=A(t)exp[j(2πFtt+ϕ0)]
则接收回波波形为 (将
t
⇒
α
v
(
t
−
2
R
0
(
1
+
β
v
)
c
t \Rightarrow \alpha _v(t-\frac{2R_0}{(1+\beta _v)c}
t⇒αv(t−(1+βv)c2R0)
x
‾
(
t
)
=
A
(
α
v
(
t
−
2
R
0
(
1
+
β
v
)
c
)
)
e
x
p
[
j
(
2
π
F
t
(
α
v
(
t
−
2
R
0
(
1
+
β
v
)
c
)
)
+
ϕ
0
)
]
\overline x(t) = A(\alpha _v(t-\frac{2R_0}{(1+\beta _v)c}))exp[j(2\pi F_t(\alpha _v(t-\frac{2R_0}{(1+\beta _v)c})) + \phi_0)]
x(t)=A(αv(t−(1+βv)c2R0))exp[j(2πFt(αv(t−(1+βv)c2R0))+ϕ0)]
进一步变形
x
‾
(
t
)
=
A
(
α
v
t
−
2
R
0
(
1
−
β
v
)
c
)
e
x
p
[
j
(
2
π
F
t
α
v
t
−
4
π
R
0
(
1
−
β
v
)
λ
+
ϕ
0
)
]
\overline x(t) = A(\alpha _vt-\frac{2R_0}{(1-\beta _v)c})exp[j(2\pi F_t\alpha _vt-\frac{4\pi R_0}{(1-\beta _v)\lambda } + \phi_0)]
x(t)=A(αvt−(1−βv)c2R0)exp[j(2πFtαvt−(1−βv)λ4πR0+ϕ0)]
可以得到接收到的回波信号频率为
F
t
α
v
t
F_t\alpha _vt
Ftαvt, 与发射时的频率
F
t
F_t
Ft的差值,即变化量,将其定义为多普勒频移
F
D
F_D
FD.
F
D
=
α
v
F
t
−
F
t
=
(
α
v
−
1
)
F
t
=
2
v
1
−
β
v
λ
H
z
F_D = \alpha _vF_t - F_t = (\alpha _v-1) F_t = \frac{2v}{1-\beta _v\lambda} \ Hz
FD=αvFt−Ft=(αv−1)Ft=1−βvλ2v Hz
目标向雷达方向靠近,多普勒频移为正;远离雷达,多普勒频移为负。
还能从上述的式子中得到接收信号的相位减少量为
Δ
ϕ
=
4
π
R
0
(
1
−
β
v
)
λ
\Delta \phi = \frac{4\pi R_0}{(1-\beta _v)\lambda }
Δϕ=(1−βv)λ4πR0
观察第一部分可以得到幅度部分时间t的系数时 α v \alpha_v αv,说明时间宽度变化了 α v \alpha_v αv倍。当物体朝着雷达方向靠近, α v > 1 \alpha_v>1 αv>1,接收的脉冲时宽被压缩为发射脉冲时宽的 1 / α v 1/\alpha_v 1/αv;当物体远离雷达雷达时,接收到的脉冲宽度拉伸为发射脉冲时宽的 1 / α v 1/\alpha_v 1/αv倍。