雷达信号处理基础 多普勒频移

《雷达信号处理基础》Mark A. Rechards 读书笔记
——————————————————————

假设雷达静止,被检测物体处于运动状态,由于多普勒效应,接收回波的频率F_r不同于发射频率。
考虑一个单基雷达,波形x(t)被任意时变距离R(t)处的目标反射回雷达接收机。回波信号表示为
y ‾ ( t ) = − k ⋅ [ 1 − 2 h ˙ ( t ) ] x ‾ [ 2 h ( t ) − t ] \overline{y} (t) = -k\cdot[1-2\dot h(t)]\overline x[2h(t) -t] y(t)=k[12h˙(t)]x[2h(t)t]
其中k包含了所有雷达距离方程中与幅度有关的因子; h ( t ) h(t) h(t)表示时刻,雷达在h(t)时发射信号, h ˙ ( t ) \dot h(t) h˙(t)表示对时间的导数。
h ( t ) h(t) h(t)必须满足
h ( t ) + 1 c R [ h ( t ) ] = t h(t) + \frac{1}{c}R[h(t)] = t h(t)+c1R[h(t)]=t

准静止假设,雷达传播速度很快,假设从雷达到目标的传播时间内,物体的运动的距离变化可以忽略不记, R ( h ( t ) ) ≈ R ( t ) R(h(t)) \approx R(t) R(h(t))R(t).
所以上式可以简化为
h ( t ) + 1 c R ( t ) = t h(t) + \frac{1}{c}R(t) = t h(t)+c1R(t)=t
h ( t ) h(t) h(t)移到等式右边,代入 y ‾ ( t ) \overline{y} (t) y(t)
h ( t ) = t − 1 c R ( t ) h(t) = t-\frac{1}{c}R(t) h(t)=tc1R(t)
y ‾ ( t ) = − k ⋅ [ 2 R ˙ ( t ) c − 1 ] x ‾ [ t − 2 R ( t ) c ] \overline{y} (t) = -k\cdot[\frac{2\dot R(t)}{c}-1]\overline x[t-\frac{2R(t)}{c}] y(t)=k[c2R˙(t)1]x[tc2R(t)]
R ˙ ( t ) \dot R(t) R˙(t)表示距离对时间的导数,即瞬时速度,其值远远小于光速c。因此,上式可以再简化为
y ‾ ( t ) = k x ‾ [ t − 2 R ( t ) c ] \overline{y} (t) = k\overline x[t-\frac{2R(t)}{c}] y(t)=kx[tc2R(t)]

对于匀速直线运动的物体, R ( t ) = R 0 − v t R(t) = R_0 -vt R(t)=R0vt, 令 β v = v / c \beta_v = v/c βv=v/c, 那么
h ( t ) = 1 1 − β v ( t − R 0 c ) h(t) = \frac{1}{1-\beta_v}(t-\frac{R_0}{c}) h(t)=1βv1(tcR0)
[ 1 − h ˙ ( t ) ] = − 1 + β v 1 − β v ≡ − α v [1-\dot h(t)] = -\frac{1+\beta _v}{1-\beta_v} \equiv -\alpha _v [1h˙(t)]=1βv1+βvαv
于是有 y ‾ ( t ) = k α v ⋅ x ‾ ( α v ( t − 2 R 0 ( 1 + β v ) c ) ) \overline y (t) = k\alpha _v\cdot \overline x(\alpha _v(t-\frac{2R_0}{(1+\beta _v)c} )) y(t)=kαvx(αv(t(1+βv)c2R0)).
当发射波形为 x ‾ ( t ) = A ( t ) e x p [ j ( 2 π F t t + ϕ 0 ) ] \overline x(t) = A(t)exp[j(2\pi F_t t+ \phi_0)] x(t)=A(t)exp[j(2πFtt+ϕ0)]
则接收回波波形为 (将 t ⇒ α v ( t − 2 R 0 ( 1 + β v ) c t \Rightarrow \alpha _v(t-\frac{2R_0}{(1+\beta _v)c} tαv(t(1+βv)c2R0)
x ‾ ( t ) = A ( α v ( t − 2 R 0 ( 1 + β v ) c ) ) e x p [ j ( 2 π F t ( α v ( t − 2 R 0 ( 1 + β v ) c ) ) + ϕ 0 ) ] \overline x(t) = A(\alpha _v(t-\frac{2R_0}{(1+\beta _v)c}))exp[j(2\pi F_t(\alpha _v(t-\frac{2R_0}{(1+\beta _v)c})) + \phi_0)] x(t)=A(αv(t(1+βv)c2R0))exp[j(2πFt(αv(t(1+βv)c2R0))+ϕ0)]
进一步变形
x ‾ ( t ) = A ( α v t − 2 R 0 ( 1 − β v ) c ) e x p [ j ( 2 π F t α v t − 4 π R 0 ( 1 − β v ) λ + ϕ 0 ) ] \overline x(t) = A(\alpha _vt-\frac{2R_0}{(1-\beta _v)c})exp[j(2\pi F_t\alpha _vt-\frac{4\pi R_0}{(1-\beta _v)\lambda } + \phi_0)] x(t)=A(αvt(1βv)c2R0)exp[j(2πFtαvt(1βv)λ4πR0+ϕ0)]
可以得到接收到的回波信号频率为 F t α v t F_t\alpha _vt Ftαvt, 与发射时的频率 F t F_t Ft的差值,即变化量,将其定义为多普勒频移 F D F_D FD.
F D = α v F t − F t = ( α v − 1 ) F t = 2 v 1 − β v λ   H z F_D = \alpha _vF_t - F_t = (\alpha _v-1) F_t = \frac{2v}{1-\beta _v\lambda} \ Hz FD=αvFtFt=(αv1)Ft=1βvλ2v Hz
目标向雷达方向靠近,多普勒频移为正;远离雷达,多普勒频移为负。
还能从上述的式子中得到接收信号的相位减少量为
Δ ϕ = 4 π R 0 ( 1 − β v ) λ \Delta \phi = \frac{4\pi R_0}{(1-\beta _v)\lambda } Δϕ=(1βv)λ4πR0

观察第一部分可以得到幅度部分时间t的系数时 α v \alpha_v αv,说明时间宽度变化了 α v \alpha_v αv倍。当物体朝着雷达方向靠近, α v > 1 \alpha_v>1 αv>1,接收的脉冲时宽被压缩为发射脉冲时宽的 1 / α v 1/\alpha_v 1/αv;当物体远离雷达雷达时,接收到的脉冲宽度拉伸为发射脉冲时宽的 1 / α v 1/\alpha_v 1/αv倍。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值