平面方程与点到平面的距离

机器学习中的数学 专栏收录该内容
6 篇文章 2 订阅

1. 平面的点法式方程

过空间的一点,与已知直线垂直的平面只有一个。因此,给定平面上的一点和垂直于该平面的一个非零向量,平面就确定了。
这就是所谓的点法式方程的基础。

(1)法向量:

任意垂直与一个平面的向量被称为法向量。
法向量有无数个。

(2)平面的点法式方程:

假设平面上的一个点 M 0 ( x 0 , y 0 , z 0 ) M_0(x_0, y_0, z_0) M0(x0,y0,z0),已知该平面的法向量为 n = ( A , B , C ) n=(A, B, C) n=(A,B,C), 那么对于平面上的任意一点 M ( x , y , z ) M(x, y ,z) M(x,y,z), 向量 M 0 = ( x − x 0 , y − y 0 , z − z 0 ) M_0 = (x-x_0, y-y_0, z-z_0) M0=(xx0,yy0,zz0)与法向量垂直,即 n ⋅ M M 0 = 0 n \cdot MM_0 = 0 nMM0=0, A ( x − x 0 ) + B ( y − y 0 ) + c ( z − z 0 ) = 0 A(x-x_0)+B(y-y_0)+c(z-z_0)=0 A(xx0)+B(yy0)+c(zz0)=0


2. 点与平面的关系

(1)点与平距离的计算

假设平面的方程为 A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0平面外的一点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0, y_0, z_0) P0(x0,y0,z0), 在平面上取一点 P 1 ( x 1 , y 1 , z 1 ) P_1(x_1, y_1, z_1) P1(x1,y1,z1), 那么点 P 0 P_0 P0到平面的距离d就是向量 P 1 P 0 P_1P_0 P1P0在法向量 n n n上投影的长度
project
d = ∣ n ⋅ P 1 P 0 ∣ n = ∣ A ( x − x 0 ) + B ( y − y 0 ) + c ( z − z 0 ) ∣ A 2 + B 2 + C 2 d=\frac{\left | n\cdot P_1P_0 \right |}{n}=\frac{\left | A(x-x_0)+B(y-y_0)+c(z-z_0) \right |}{\sqrt{A^{2}+ B^{2}+C^{2}}} d=nnP1P0=A2+B2+C2 A(xx0)+B(yy0)+c(zz0) = ∣ A x − A x 0 + B y − B y 0 + C z − C z 0 ∣ A 2 + B 2 + C 2 = ∣ A x + B y + C z − A x 0 − B y 0 − C z 0 ∣ A 2 + B 2 + C 2 =\frac{\left | Ax-Ax_0+By-By_0+Cz-Cz_0 \right |}{\sqrt{A^{2}+ B^{2}+C^{2}}}=\frac{\left | Ax+By+Cz-Ax_0-By_0-Cz_0 \right |}{\sqrt{A^{2}+ B^{2}+C^{2}}} =A2+B2+C2 AxAx0+ByBy0+CzCz0=A2+B2+C2 Ax+By+CzAx0By0Cz0 = ∣ D + A x 0 + B y 0 + C z 0 ∣ A 2 + B 2 + C 2 =\frac{\left |D+ Ax_0+By_0+Cz_0 \right |}{\sqrt{A^{2}+ B^{2}+C^{2}}} =A2+B2+C2 D+Ax0+By0+Cz0
所以点 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)到平面的距离为 d = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 d=\frac{\left | Ax_0+By_0+Cz_0 +D\right |}{\sqrt{A^{2}+ B^{2}+C^{2}}} d=A2+B2+C2 Ax0+By0+Cz0+D


同济版 高等数学

  • 3
    点赞
  • 2
    评论
  • 13
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 精致技术 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值