#include<opencv2/opencv.hpp>
#include<iostream>
#include<vector>
using namespace cv;
using namespace std;
int main()
{
Mat srcImage = imread("mofang1.jpg");
imshow("【原图】", srcImage);
//对BGR空间的图像直接进行计算很费时间,所以,需要转换为灰度图
Mat srcGrayImage;
cvtColor(srcImage, srcGrayImage, CV_BGR2GRAY);
//首先对两幅图像进行特征点的检测和描述子的计算
vector<KeyPoint> keyPoint1;
//这里用SURF会更加快
SIFT surf(2000);
surf.detect(srcGrayImage, keyPoint1);
Mat descriImage1;
surf.compute(srcGrayImage, keyPoint1, descriImage1);
//先对原图的描述子进行保留
BFMatcher FLMatcher;
//因为FlannBasedMatcher类的成员函数add()的参数是一个vector<Mat>的容器,所以先定义一个这样的变量,并将原图的描述子放入容器中
vector<Mat> g_vdescriImage1(1, descriImage1);
/*g_vdescriImage1.push_back(descriImage1);*/
//调用FlannBasedMatcher类的成员函数add,将原图的描述子放在FlannBasedMatcher的对象FLMatcher中
FLMatcher.add(g_vdescriImage1);
//...........................................................
FLMa
opencv3中SIFT配合暴力匹配进行关键点描述和提取
最新推荐文章于 2024-09-29 03:30:00 发布
本文演示了如何在OpenCV3中利用SIFT特征检测与描述子进行图像关键点匹配。通过将原图像转换为灰度图,然后使用SIFT检测关键点并计算描述符。接着,使用BFMatcher进行暴力匹配,并通过FlannBasedMatcher加速匹配过程。在实时视频流中,不断检测新帧的关键点,与原图进行匹配,并显示匹配结果。
摘要由CSDN通过智能技术生成