opencv3中SIFT配合暴力匹配进行关键点描述和提取

本文演示了如何在OpenCV3中利用SIFT特征检测与描述子进行图像关键点匹配。通过将原图像转换为灰度图,然后使用SIFT检测关键点并计算描述符。接着,使用BFMatcher进行暴力匹配,并通过FlannBasedMatcher加速匹配过程。在实时视频流中,不断检测新帧的关键点,与原图进行匹配,并显示匹配结果。
摘要由CSDN通过智能技术生成
#include<opencv2/opencv.hpp>
#include<iostream>
#include<vector>

using namespace cv;
using namespace std;

int main()
{
	Mat srcImage = imread("mofang1.jpg");
	imshow("【原图】", srcImage);

	//对BGR空间的图像直接进行计算很费时间,所以,需要转换为灰度图
	Mat srcGrayImage;
	cvtColor(srcImage, srcGrayImage, CV_BGR2GRAY);

	//首先对两幅图像进行特征点的检测和描述子的计算
	vector<KeyPoint> keyPoint1;
	//这里用SURF会更加快
	SIFT surf(2000);
	surf.detect(srcGrayImage, keyPoint1);
	Mat descriImage1;
	surf.compute(srcGrayImage, keyPoint1, descriImage1);

	//先对原图的描述子进行保留
	BFMatcher FLMatcher;
	//因为FlannBasedMatcher类的成员函数add()的参数是一个vector<Mat>的容器,所以先定义一个这样的变量,并将原图的描述子放入容器中
	vector<Mat> g_vdescriImage1(1, descriImage1);
	/*g_vdescriImage1.push_back(descriImage1);*/
	//调用FlannBasedMatcher类的成员函数add,将原图的描述子放在FlannBasedMatcher的对象FLMatcher中
	FLMatcher.add(g_vdescriImage1);
	//...........................................................
	FLMa
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值