OCR识别PDF文件

1现有解析pdf的方法
使用org.apache.pdfbox读取pdf,只能读取pdf中的文字,有些纸件扫描成的pdf文字会错乱,有些字还是图片的方式显示的,导致读取的内容不全,常常会获取不到想要的数据。

2 OCR文字识别
pdf需要转换为图片,进行识别,识别率高。

2.1 调用百度接口
优点:识别率高,识别速度快

缺点:按次收费

2.2 使用开源工具读取pdf文档
2.2.1 下载工具包
https://github.com/tesseract-ocr/tessdata 下载chi_sim.traineddata,chi_sim_vert.traineddata

2.2.2 添加依赖

<dependencies>
        <dependency>
            <groupId>net.sourceforge.tess4j</groupId>
            <artifactId>tess4j</artifactId>
            <version>4.4.0</version>
        </dependency>
 </dependencies>

2.2.3 编写程序

import net.sourceforge.tess4j.Tesseract;
import net.sourceforge.tess4j.TesseractException;
public class TestTess {
         public static void main(String[] args) {
        // 识别图片的路径(修改为自己的图片路径)
       String path = "C:\\work\\notebook\\prototype\\target\\qq1.jpg";
       // 语言库位置(修改为跟自己语言库文件夹的路径)
      // String lagnguagePath = "C:\\work\\projects\\tess\\resources\\tessdata";
       File file = new File(path);
       ITesseract instance = new Tesseract();
       //设置训练库的位置
       //instance.setDatapath(lagnguagePath);
       //chi_sim :简体中文, eng    根据需求选择语言库
       instance.setLanguage("chi_sim");
       String result = null;
       try {
           long startTime = System.currentTimeMillis();
           result =  instance.doOCR(file);
           long endTime = System.currentTimeMillis();
           System.out.println("Time is:" + (endTime - startTime) + " 毫秒");
       } catch (TesseractException e) {
           e.printStackTrace();
       }
       System.out.println("result: ");
       System.out.println(result);                 
         }
}

2.3 读取pdf的特定位置的数据
2.3.1 手动截取pdf指定矩形区域的材料
需要前端配合做页面,改成自动获取,这样增加文档类型时,需要配置一下。

2.3.2 Python程序获取图片标识区域在整个文档中的矩形坐标

import aircv
def matchImg(imgsrc, imgobj, confidence=0.2):
    """
        图片对比识别imgobj在imgsrc上的相对位置(批量识别统一图片中需要的部分)
    :param imgsrc: 原始图片路径(str)
    :param imgobj: 待查找图片路径(模板)(str)
    :param confidence: 识别度(0<confidence<1.0)
    :return: None or dict({'confidence': 相似度(float), 'rectangle': 原始图片上的矩形坐标(tuple), 'result': 中心坐标(tuple)})
    """
    imsrc = aircv.imread(imgsrc)
    imobj = aircv.imread(imgobj)
    match_result = aircv.find_template(imsrc, imobj,
                                    confidence)  # {'confidence': 0.5435812473297119, 'rectangle': ((394, 384), (394, 416), (450, 384), (450, 416)), 'result': (422.0, 400.0)}
    if match_result is not None:
        match_result['shape'] = (imsrc.shape[1], imsrc.shape[0])  # 0为高,1为宽
    return match_result
template = {'address':'dz.jpg','doc_num':'fw.jpg','doc_type':'fwlx.jpg','issue_date':'fwrq.jpg',
              'int_cls': 'splb.jpg','apply_num':'sqh.jpg','applyer':'sqr.jpg','content':'zw.jpg'}
for key, value in template.items():

    orig = matchImg("target/qq.jpg","target/"+value)

    rect = orig['rectangle']

    w = rect[3][0] - rect[0][0]

    h = rect[3][1] - rect[0][1]

    x = rect[0][0]

    y = rect[0][1]

    ret = [x,y,w,h]

    print(key,ret)

2.3.3 Java程序根据矩形区域坐标,获取指定位置信息

package odysssey.tess;
import java.io.File;
import java.io.IOException;
import java.util.List;
import javax.imageio.ImageIO;
import java.awt.Rectangle;
import net.sourceforge.tess4j.ITessAPI.TessPageIteratorLevel;
import net.sourceforge.tess4j.ITesseract;
import net.sourceforge.tess4j.Tesseract;
import net.sourceforge.tess4j.TesseractException;
public class TestTess {
         public static void main(String[] args) throws IOException {
        // 识别图片的路径(修改为自己的图片路径)
       String path = "C:\\work\\notebook\\prototype\\target\\qq.jpg";
       // 语言库位置(修改为跟自己语言库文件夹的路径)
      // String lagnguagePath = "C:\\work\\projects\\tess\\resources\\tessdata";
       File file = new File(path);
       ITesseract instance = new Tesseract();
       //设置训练库的位置
       /*
                     address [61, 312, 734, 82]

                          doc_num [1002, 338, 527, 78]

                          doc_type [425, 736, 801, 82]

                          issue_date [64, 593, 495, 64]

                          int_cls [115, 969, 346, 82]

                          apply_num [676, 589, 388, 68]

                          applyer [72, 450, 481, 68]

                          content [107, 899, 1439, 70]

        */    
         int rects[][] = {{61, 312, 734, 82},

                                         {1002, 338, 527, 78},

                                            {425, 736, 801, 82},

                                            {64, 593, 495, 64},

                                            {115, 969, 346, 82},

                                            {676, 589, 388, 68},

                                            {72, 450, 481, 68},

                                            {107, 899, 1439, 70}};
         
       //chi_sim :简体中文, eng    根据需求选择语言库

       instance.setLanguage("chi_sim");
       instance.setTessVariable("user_defined_dpi", "96");
       String result = null;
       try {
           long startTime = System.currentTimeMillis();
           //result =  instance.doOCR(file);
           for(int i = 0 ;i < rects.length;i++){
               Rectangle rr = new Rectangle(rects[i][0],rects[i][1],rects[i][2],rects[i][3]);
                    result =instance.doOCR(file, rr);
               System.out.println(result);                 
           }
    /*       List<Rectangle> resul=instance.getSegmentedRegions(ImageIO.read(file), TessPageIteratorLevel.RIL_SYMBOL);
           for (int i = 0; i < resul.size(); i++) {
               Rectangle rect = resul.get(i);
               System.out.println(String.format("Box[%d]: x=%d, y=%d, w=%d, h=%d", i, rect.x, rect.y, rect.width, rect.height));
           }
      */     long endTime = System.currentTimeMillis();
           System.out.println("Time is:" + (endTime - startTime) + " 毫秒");
       } catch (TesseractException e) {
           e.printStackTrace();
       }
    }
}
<think>好的,我现在需要帮助用户解决如何使用Java实现OCR识别PDF文件的问题。用户明确询问是否有Java的OCR PDF库或解决方案,我需要根据提供的引用和已有的知识来构建答案。 首先,回顾用户提供的引用内容。引用[1]提到使用pdf2image、OpenCV和PyTesseract在Python中处理PDFOCR,但用户需要Java解决方案。引用[2]提到了Foxit的PDF SDK for Linux,可能支持PDF处理,但不确定是否包含OCR功能。引用[3]提到了一个Android相关的包,可能与问题无关。 接下来,我需要思考Java生态中常见的OCRPDF处理库。已知Tesseract是一个开源的OCR引擎,Java可以通过Tess4J来调用。另外,Apache PDFBox是处理PDF的常用库,可以将PDF转换为图像,然后进行OCR处理。还有可能其他商业解决方案,比如Aspose.OCR或者ABBYY的SDK,但可能需要付费。 然后,用户需要的是步骤,所以应该分步骤说明如何结合这些工具。例如,首先用PDFBox将PDF转为图片,然后用Tess4J进行OCR识别。同时,需要提到可能的依赖项,比如需要安装Tesseract引擎本身,而不仅仅是Java库。 另外,引用中提到的Foxit PDF SDK可能也支持OCR,需要确认。根据引用[2],Foxit的SDK主要是处理PDF的,但可能包含OCR模块,需要查证。如果是的话,可以推荐作为商业解决方案的一部分。 还需要考虑用户可能遇到的常见问题,比如图像预处理对OCR精度的影响,所以建议在转换后使用OpenCV进行预处理,比如二值化、降噪等。不过用户是Java环境,可能需要用Java的图像处理库,如OpenCV的Java绑定,或者使用其他库如ImageJ。 然后,生成相关问题需要考虑用户可能的后续问题,比如如何提高OCR准确性,如何处理扫描版PDF,是否有其他库推荐等。 最后,确保回答符合格式要求,使用正确的LaTeX格式,分步骤结构清晰,引用正确,并在末尾添加相关问题。</think>以下是使用Java实现OCR识别PDF文件的解决方案: ### 分步解决方案 1. **PDF转图像** 使用Apache PDFBox库将PDF转换为图像格式(PNG/JPG),这是OCR处理的前提条件。安装依赖: ```xml <dependency> <groupId>org.apache.pdfbox</groupId> <artifactId>pdfbox</artifactId> <version>2.0.27</version> </dependency> ``` 转换代码示例: ```java PDDocument document = PDDocument.load(new File("input.pdf")); PDFRenderer renderer = new PDFRenderer(document); BufferedImage image = renderer.renderImage(0, 2.0f); // 第二参数为缩放比例 ImageIO.write(image, "PNG", new File("page1.png")); ``` 2. **OCR识别** 通过Tess4J调用Tesseract引擎进行文字识别,需先安装[Tesseract OCR](https://github.com/tesseract-ocr/tesseract): ```xml <dependency> <groupId>net.sourceforge.tess4j</groupId> <artifactId>tess4j</artifactId> <version>5.2.1</version> </dependency> ``` 识别代码示例: ```java ITesseract instance = new Tesseract(); instance.setDatapath("tessdata/"); // 训练数据路径 String result = instance.doOCR(new File("page1.png")); ``` 3. **商业方案集成** Foxit PDF SDK提供完整的OCR功能[^2],支持Java调用: ```java PDFDoc doc = new PDFDoc("input.pdf"); OCRModule module = new OCRModule(); module.process(doc, OCRModule.LANGUAGE.ENG); ``` ### 关键优化建议 - 图像预处理:使用OpenCV Java版进行灰度化、二值化和降噪处理 - 语言支持:通过`instance.setLanguage("chi_sim+eng")`添加多语言包 - 版面分析:对扫描版PDF使用`instance.setPageSegMode(PageSegMode.PSM_AUTO_OSD)`
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值