扫描PDF变可编辑?OCRmyPDF一键搞定,效率提升10倍!

OCRmyPDF 是一款开源的命令行工具,专为将扫描的 PDF 文件转换为可搜索、可复制的文档。通过添加 OCR 文本层,OCRmyPDF 能够将无法直接编辑的扫描 PDF 文件变为可以搜索和编辑的格式。该工具基于 Tesseract OCR 引擎实现高效的文字识别,并支持多种语言和图像优化功能。



Stars 数26876
Forks 数1768

主要特点

  • OCR 文本层添加:为扫描的 PDF 文件添加 OCR 文本层。这意味着你可以轻松地在 PDF 文件中搜索文字内容,或者复制文字到其他地方。这对于需要从扫描文档中提取信息的用户来说简直是福音。

  • 多语言支持:它支持超过 100 种语言的 OCR 识别,无论是中文、英文、法文还是其他小语种,都能轻松应对。你只需要在命令中指定语言参数,OCRmyPDF 就会根据你的需求进行识别。

  • 图像优化与校正:OCRmyPDF 不仅能添加 OCR 文本层,还能优化 PDF 图像。它可以在 OCR 之前对图像进行校正,比如修复倾斜的页面、调整图像的对比度等,让生成的 PDF 文件更加清晰、美观。

  • 生成 PDF/A 文件:PDF/A 是一种专门用于长期存储的 PDF 格式,OCRmyPDF 默认生成 PDF/A 文件,这使得生成的 PDF 文件更适合长期保存和归档。

OCRmyPDF 作为一款开源的 PDF 处理工具,它集成了多种强大的功能,能够帮助我们轻松处理扫描后的 PDF 文件。无论是添加 OCR 文本层、优化图像还是校正页面,OCRmyPDF 都能高效地完成任务。它不仅节省了我们的时间,还提高了我们的工作效率。 

GitHub:https://github.com/ocrmypdf/OCRmyPDF

### 回答1: 可以使用java中的LinkedHashMap类来实现LRU缓存淘汰策略。LinkedHashMap是一种特殊的HashMap,它不仅保存了键值对,还维护了一个双向链表来记录插入顺序,当缓存满后,它会将最先插入的元素淘汰掉。 ### 回答2: LRU(最近最少使用)缓存淘汰策略是指在缓存满时,优先淘汰最近最少使用的数据。实现LRU缓存淘汰策略可以使用链表和哈希表的组合。 首先,我们可以创建一个双向链表的节点类,包含键值对的信息,以及前后指针。链表的头部表示最近访问的节点,尾部表示最久未使用的节点。 我们还需要一个哈希表,用于快速查找节点。哈希表的键是缓存的键,值是对应的节点。 接下来,我们需要实现缓存淘汰策略的几个操作: 1. 获取操作:当尝试获取缓存中的键值对时,如果哈希表中存在该键,则将对应的节点移动到链表头部,并返回该值。如果哈希表中不存在该键,则返回空。 2. 添加操作:当添加新的键值对时,如果该键已存在于缓存中,则将该节点移到链表头部,更新值。否则,创建新节点,并将其插入到链表头部和哈希表中。如果缓存已满,删除链表尾部的节点,并在哈希表中删除对应的键。 3. 删除操作:当从缓存中删除某个键值对时,找到对应的节点,从链表中删除该节点,并在哈希表中删除该键。 以上就是使用Java链表实现LRU缓存淘汰策略的基本思路。通过使用双向链表和哈希表的组合,能够快速实现缓存的增删改查操作,并保持对节点访问的顺序,以便实现LRU策略。 ### 回答3: LRU(Least Recently Used,最近最少使用)是一种常用的缓存淘汰策略,当缓存满时,会将最长时间未被使用的数据从缓存中淘汰。实现LRU缓存淘汰策略可以使用Java中的链表来实现。 Java中已经提供了LinkedList类,可以直接用于实现链表数据结构。接下来是一个简单的实现LRU缓存的示例代码: ``` import java.util.LinkedList; public class LRUCache<K, V> { private int capacity; private LinkedList<Entry<K, V>> cache; public LRUCache(int capacity) { this.capacity = capacity; this.cache = new LinkedList<>(); } public V get(K key) { Entry<K, V> entry = findEntryByKey(key); if (entry != null) { // 将使用的数据移动到链表头部 cache.remove(entry); cache.addFirst(entry); return entry.value; } return null; } public void put(K key, V value) { Entry<K, V> entry = findEntryByKey(key); if (entry != null) { // 如果key已存在,更新其value,并将数据移动到链表头部 entry.value = value; cache.remove(entry); cache.addFirst(entry); } else { // 如果key不存在,先判断容量是否已满,如果已满则移除最久未使用的数据 if (cache.size() >= capacity) { cache.removeLast(); } // 将新数据插入到链表头部 Entry<K, V> newEntry = new Entry<>(key, value); cache.addFirst(newEntry); } } private Entry<K, V> findEntryByKey(K key) { for (Entry<K, V> entry : cache) { if (entry.key.equals(key)) { return entry; } } return null; } private static class Entry<K, V> { private K key; private V value; public Entry(K key, V value) { this.key = key; this.value = value; } } } ``` 使用示例: ``` LRUCache<String, Integer> cache = new LRUCache<>(3); cache.put("a", 1); cache.put("b", 2); cache.put("c", 3); System.out.println(cache.get("a")); // 输出1 cache.put("d", 4); System.out.println(cache.get("b")); // 输出null,因为b是最久未使用的数据,已被淘汰 ``` 在LRUCache类中,使用LinkedList作为缓存的数据存储结构。缓存的最近使用的数据总是位于链表的头部,当需要访问或更新数据时,将其移动到链表头部。当缓存已满时,移除链表尾部的最久未使用的数据。 这种实现方式可以在O(1)的时间复杂度内实现get和put操作,符合LRU缓存淘汰策略的特性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值