leetcode 72. 编辑距离

题目:

在这里插入图片描述

代码;
这题其实可以用,动态规划和递归来解

方法一:动态规划 (自底向上)
题目中 针对三个条件
插入一个字符
删除一个字符
替换一个字符

我们可以具体化:
word1删除最后一个元素
word2删除最后一个元素
word1或者word2修改最后一个元素和另外一个字符串元素相同

确认状态: 首先 dp[i][j]代表着从word1 中前第i(包括i)个字符到word2中第j(包含j)个字符的最小操作数

状态转移:
当 word1【i】==word1【j】时,dp[i][j] =dp[i-1][j-1]也就是代码

 if(word1[i-1]==word2[j-1]) dp[i][j]=dp[i-1][j-1];//注意i代表第前i个元素,所以我们待比较下标是index=i-1

否则 经过上面的条件进行操作 (+1的含义),也就是代码

 dp[i][j]=min(dp[i-1][j-1],//修改word1或者word2中的最后一个字符使得最后一个字符相等
	          min(
	                dp[i-1][j],//删除word1的最后一个字符
	                dp[i][j-1]//删除word2的最后一个字符
	                )
                            
                         )+1;//+1代表本次操作了一次(删除,修改)

初始化:
当一个字符为空时,最小操作数,就是另外一个字符的长度

所求答案:
dp[word1.size()][word2.size()];
代码:

class Solution {
public:
    int minDistance(string word1, string word2)
     {
         //这个题目使用动态规划时,需要找到子问题。
         //首先 dp[i][j]代表着从word1 中前第i(包括i)个字符到word2中第j(包含j)个字符的最小操作数


         vector<vector<int>  > dp(word1.size()+1,vector<int>(word2.size()+1,0));

    



         for(int i=0;i<word1.size()+1;i++)//这个是word1的遍历   word1.size()+1也就是说可以是前0个函数
         {
             for(int j=0;j<word2.size()+1;j++)//这个是word2的遍历
             {

                 if(i==0) dp[i][j]=j;
                 else if(j==0) dp[i][j]=i;
                 else//就是两个字符串都不为空
                 {
                     if(word1[i-1]==word2[j-1]) dp[i][j]=dp[i-1][j-1];//注意i代表第前i个元素,所以我们待比较下标是index=i-1
                     else
                     {
                        dp[i][j]=min(dp[i-1][j-1],//修改word1或者word2中的最后一个字符使得最后一个字符相等
                                        min(
                                            dp[i-1][j],//删除word1的最后一个字符
                                            dp[i][j-1]//删除word2的最后一个字符
                                            )
                            
                         )+1;//+1代表本次操作了一次(删除,修改)
                       
                     }
                 }

               
                
             }
         }

         return dp[word1.size()][word2.size()];



    }
};

递归写法:自顶向下
没啥好说的,基本思路也是动态规划中的动态转移方程
代码:

class Solution {
    int dfs (string word1,string word2)
    {
        int len1=word1.size();
        int len2=word2.size();

        if(len1==0||len2==0)   return max(len1,len2);


        if(word1[len1-1]==word2[len2-1])  return dfs(word1.substr(0,len1-1),word2.substr(0,len2-1));
        
        return min(
            dfs(word1.substr(0,len1),word2.substr(0,len2-1)),// 删除
            min(
                dfs(word1.substr(0,len1-1),word2.substr(0,len2)),//删除A
                dfs(word1.substr(0,len1-1),word2.substr(0,len2-1))
                )//修改A或者修改B
        )+1;
    }
public:
    int minDistance(string word1, string word2)
     {


         return dfs(word1,word2);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值