题目:
代码;
这题其实可以用,动态规划和递归来解
方法一:动态规划 (自底向上)
题目中 针对三个条件
插入一个字符
删除一个字符
替换一个字符
我们可以具体化:
word1删除最后一个元素
word2删除最后一个元素
word1或者word2修改最后一个元素和另外一个字符串元素相同
确认状态: 首先 dp[i][j]代表着从word1 中前第i(包括i)个字符到word2中第j(包含j)个字符的最小操作数
状态转移:
当 word1【i】==word1【j】时,dp[i][j] =dp[i-1][j-1]也就是代码
if(word1[i-1]==word2[j-1]) dp[i][j]=dp[i-1][j-1];//注意i代表第前i个元素,所以我们待比较下标是index=i-1
否则 经过上面的条件进行操作 (+1的含义),也就是代码
dp[i][j]=min(dp[i-1][j-1],//修改word1或者word2中的最后一个字符使得最后一个字符相等
min(
dp[i-1][j],//删除word1的最后一个字符
dp[i][j-1]//删除word2的最后一个字符
)
)+1;//+1代表本次操作了一次(删除,修改)
初始化:
当一个字符为空时,最小操作数,就是另外一个字符的长度
所求答案:
dp[word1.size()][word2.size()];
代码:
class Solution {
public:
int minDistance(string word1, string word2)
{
//这个题目使用动态规划时,需要找到子问题。
//首先 dp[i][j]代表着从word1 中前第i(包括i)个字符到word2中第j(包含j)个字符的最小操作数
vector<vector<int> > dp(word1.size()+1,vector<int>(word2.size()+1,0));
for(int i=0;i<word1.size()+1;i++)//这个是word1的遍历 word1.size()+1也就是说可以是前0个函数
{
for(int j=0;j<word2.size()+1;j++)//这个是word2的遍历
{
if(i==0) dp[i][j]=j;
else if(j==0) dp[i][j]=i;
else//就是两个字符串都不为空
{
if(word1[i-1]==word2[j-1]) dp[i][j]=dp[i-1][j-1];//注意i代表第前i个元素,所以我们待比较下标是index=i-1
else
{
dp[i][j]=min(dp[i-1][j-1],//修改word1或者word2中的最后一个字符使得最后一个字符相等
min(
dp[i-1][j],//删除word1的最后一个字符
dp[i][j-1]//删除word2的最后一个字符
)
)+1;//+1代表本次操作了一次(删除,修改)
}
}
}
}
return dp[word1.size()][word2.size()];
}
};
递归写法:自顶向下
没啥好说的,基本思路也是动态规划中的动态转移方程
代码:
class Solution {
int dfs (string word1,string word2)
{
int len1=word1.size();
int len2=word2.size();
if(len1==0||len2==0) return max(len1,len2);
if(word1[len1-1]==word2[len2-1]) return dfs(word1.substr(0,len1-1),word2.substr(0,len2-1));
return min(
dfs(word1.substr(0,len1),word2.substr(0,len2-1)),// 删除
min(
dfs(word1.substr(0,len1-1),word2.substr(0,len2)),//删除A
dfs(word1.substr(0,len1-1),word2.substr(0,len2-1))
)//修改A或者修改B
)+1;
}
public:
int minDistance(string word1, string word2)
{
return dfs(word1,word2);
}
};