复数的表示

复数的表示


  1. 复数:首先,复数基本单位是 i = − 1 i=\sqrt{−1} i=1
    有了这个单位,复数空间中的每个数都可以表示为 a + b i a+bi a+bi 的形式。其中, a a a 被称为实部 real part b b b 被称为虚部 imaginary part
    复数可以在复平面(complex plane)上表示,复平面横纵坐标分别为实部和虚部。

  1. 事实上,复数是可以用坐标表示的,我们可以在复平面中计算出来。
    例如,复数 4 + 3 i 4+3i 4+3i 的复平面直角坐标表示是 ( x , y ) = ( 4 , 3 ) (x,y)=(4,3) (x,y)=(4,3),原点指向该点的向量长度 r = 4 2 + 3 2 = 5 r=\sqrt{4^2+3^2}=5 r=42+32 =5,向量的角度 θ = arctan ⁡ ( 3 4 ) \theta=\arctan {(\frac{3}{4})} θ=arctan(43)。这里,复数极坐标表示的长度 r r r 也被称为强度 magnitude,角度 θ \theta θ 也被称为相位 phase
    有以下关系:
    x = r cos ⁡ θ y = r sin ⁡ θ \begin{aligned} x &= r \cos \theta \\ y &= r \sin \theta \end{aligned} xy=rcosθ=rsinθ

  1. 复数的复指数表示与欧拉公式
    欧拉有一天发现,神奇数字 e \text e e 的纯虚数次方竟然在复数平面上绕圈!
    用极坐标形式表示,就是 e i θ = cos ⁡ θ + i sin ⁡ θ \text e^{i\theta} = \cos \theta+i \sin \theta eiθ=cosθ+isinθ
    于是复数的表现形式有:
    v ∈ C 1 = x + i y = r ( cos ⁡ θ + i sin ⁡ θ ) = r e i θ ( x , y ) = ( r cos ⁡ θ , r sin ⁡ θ ) v = ( r , θ ) \begin{aligned} v \in \mathbb{C}^{1} &= x+iy\\ &=r( \cos \theta+i \sin \theta )\\ &= r\text e^{i\theta} \\ (x,y) &= (r \cos \theta, r \sin \theta) \\ \mathbf v &= (r , \theta) \end{aligned} vC1(x,y)v=x+iy=r(cosθ+isinθ)=reiθ=(rcosθ,rsinθ)=(r,θ)
    而当 r = 1 r=1 r=1 θ = π \theta=\pi θ=π 时,对应的直角坐标刚好就是 ( − 1 , 0 ) (−1,0) (1,0),也就是实数 -1。由此就有了那个著名的欧拉公式
    e i π + 1 = 0 \text e^{i\pi} +1 = 0 eiπ+1=0
    复指数信号可以用来表示实数正弦信号:

{ e i θ = cos ⁡ θ + i sin ⁡ θ e − i θ = cos ⁡ θ − i sin ⁡ θ ⇒ { cos ⁡ θ = e i θ + e − i θ 2 sin ⁡ θ = e i θ − e − i θ 2 i \left\{ \begin{array}{l} e^{i\theta}=\cos \theta+i\sin\theta\\ e^{-i\theta}=\cos\theta-i\sin\theta \end{array} \right. ⇒ \left\{ \begin{array}{l} \cos\theta=\frac{e^{i\theta}+e^{-i\theta}}{2}\\ \sin\theta=\frac{e^{i\theta}-e^{-i\theta}}{2i} \end{array} \right. {eiθ=cosθ+isinθeiθ=cosθisinθ{cosθ=2eiθ+eiθsinθ=2ieiθeiθ

refs

[1]. https://mengqi92.github.io/2015/10/06/complex/
[2]. https://blog.csdn.net/lanchunhui/article/details/54600285

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值