连续函数的平移自交相关

问题引入

前几天,有人问我一个有趣的数分问题:

k 为大于1的正整数,f:[0,k]R是连续函数,满足 f(0)=f(k) 。证明:至少有 k 对不相同的(x1,x2),满足 f(x1)=f(x2) 而且 x2x1 是整数。

这是一个很有意思的问题,初看这个问题,脑子里大概有两个想法:

  • 会不会对于每个 ik,iN ,都有 (xa,xb)[0,k] ,使得, xbxa=i
  • 对任意的 aR ,函数方程 f(x+a)=f(a) 都有解?
    这里写图片描述

我们可以构造函数否定这两个想法(实际上只要否定第一个想法即可),构造如下函数,如图(a):

y=sin(2πx5),0x5,y=sin(2π(x3)5),0x5

这两个函数不相交,这说明前面的想法是错误的(这里向右平移了3个单位),前天我在博客上放了一个伪证(已删除)是基于第一个想法的,虽然是错的,但是给正确的解答也提供了思路,同时伪证的办法可以解决一个弱一点的问题 Universal chord theorem,即:

(Universal chord theorem)对于一个连续函数 f ,如果有f(a)=f(b),那么对于任意自然数 n ,必定存在ξ[a,b],使得 f(ξ+1n)=f(ξ) 成立。

我们来看看图(b),实际上,题目所要求的 k 对不相同的(x1,x2)最优的估计,我们可以随意构造像图(b)这样的连续上凸函数,他们都满足有且仅有 k 对不相同的(x1,x2)满足条件。如此看来问题陷入了一个僵局, k 对时最优的,且并不是每一个整数间隔都是存在数对的(否则可以取遍所有的ik,iN即证),那么该如何去做呢?

正解

传闻这道题是2014年某高校的博士入学考,后来有同学告诉我这是裴礼文的原题(第二版145页),做法是数学归纳法加上介值定理,数学归纳法我也想过,不过想必是需要神构造的,果真如此:

证明: n=1 时候显然成立,假设 n=k 时候成立,下面来考察一下 n=k+1 的情况,构造函数 F(x)=f(x+1)f(x) ,由 f(0)=f(k+1) 有:(这一步我之前的伪证也给出了)

i=0k+1F(i)=i=0k+1f(i+1)f(i)=f(k+1)f(0)=0,

于是必定存在两个整数结点上的函数值符号是互异的(否则全为正或者负,与其和为0矛盾!),由连续函数的介值定理即可证明存在 ξ[0,k+1] 使得 f(ξ+1)=f(ξ) ,这实际上说明了间隔为1的解必定存在。当然这也可以直接用上面提到的 Universal chord theorem说明(取 n=1 即可)。

上面的 (ξ,ξ+1) 是满足要求的一组数对,下面 构造神函数:

φ(x)={f(x),x[0,ξ]f(x+1),x(ξ,k],

注意到 φ(x) 是连续函数,且 φ(0)=φ(k) ,由归纳假设 φ(x) k 对满足条件的数对,且这些数对也恰好是满足f k 组数对!!这k组数对和 (ξ,ξ+1) 显然不同,加在一起一共 k+1 对,于是由数学归纳法便完成了证明。

更进一步的思考

对于上面的第二个想法,稍作修改,提出如下猜想:

fC(R) ,且 limxf limx+f ,那么 limxf 存在(即正负极限相等)的充要条件是:函数方程 f(x+a)=f(x) 有解,其中 aR .

必要性很快就找到反例了,构造如下函数:

φ(x)=1,x1x,1<x<11,x1,

它满足 f(φ+a)=f(φ) 有解,但是极限不存在,那么充分性是否正确呢?下面给出证明(应该没问题):

Conjecture: fC(R) ,且 limxf 存在,则函数方程 f(x+a)=f(x) 有解,其中 aR .

证明:先证明 limxf 有限的情况,不妨设 limxf=k

  • fk ,那么显然
  • x0R s.t. f(x0)>k ,则 ξ1R s.t. f(x)f(ξ1),xR

f R存在最大值,这是因为由极限的定义我们有: ε>0 N1>0 ,当 x>N1 时候有, f(x)<ε+k N2<0 ,当 x<N2 时候有, f(x)<ε+k

注意到我们总能取足够小的 ε ,使得一方面 f(x0)>k+ε (注意到 f(x0)>k ),另一方面使得 x0[N2,N1] ,由闭区间上连续函数的性质我么可以知道 f [N2,N1]上有最大值 f(ξ1) ,又因为 x0[N2,N1] ,所以

f(ξ1)f(x0),

又因为 f(x0)>k+ε ,于是马上有:
f(ξ1)f(x0)>k+ε>f(x),x(,N2)(N1,+)

综上,即证若 x0R s.t. f(x0)>k ,则 f R存在最大值。构造函数:
F(x)=f(x)f(x+a),

注意到,我们有:
F(ξ1)=f(ξ1)f(ξ1+a)0,F(ξ1a)=f(ξ1a)f(ξ1)0,

F(x) 的连续性和介值定理我们知道在 [ξ1a,ξ1] 上存在解 xgd 使得 F(xgd)=0 ,即所求函数方程有解。

  • 若不 x0R s.t. f(x0)>k ,则 xR f(x)k

类似地我们可以证明 ξ2R s.t. f(x)f(ξ2),xR ,即 f R上有最小值,构造一样的函数我们可以证明 F(x) [ξ2a,ξ2] 上有零点。

于是乎, limxf 有限的情况证明完毕,实际上上面的证明说明了,在假设所给条件下, f 最大最小值必定至少存在一个。下面来说明极限为的时候同样成立,下面只证明 limxf= 的情况, + 的情况类似。

由极限的定义有, M<0 N1>0 ,当 x>N1 时有, f(x)<M N2<0 ,当 x<N2 时候有, f(x)<M ,类似地对 [N2,N1] 用介值定理可以说明在 [N2,N1] 上有最大值,取 M 足够小,即可得出f R <script type="math/tex" id="MathJax-Element-196">R</script>上有最大值,函数方程解的存在性和上述类似构造即可。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值