(LXTML笔记)Adaptive Boosting

Adaptive Boosting

Adaptive Boosting也是一种集成模型,课程中以下面的过程为例
这里写图片描述
老师让同学们对图中的水果进行分类,如同学们说red是苹果,然后老师就将正确分类的水果变小,错误分类的水果变大,这样的话,在下一轮的划分中,同学们就容易从错误的样例中找到“新的正确的”分类方法,最后,将这堂课的所有分类组合起来就是最后的很强的分类方法。Adaptive Boosting就是基于这样的思想。

这里写图片描述
上一节讲到,多样化 gt g t 的一种方法是基于不同数据的,假设此时有数据集 D={(x1,y1),...,(x4,y4)} D = { ( x 1 , y 1 ) , . . . , ( x 4 , y 4 ) } ,我们通过bootstrap重新抽样得到了“新的”的数据 {(x1,y1),(x1,y1)...,(x4,y4)} { ( x 1 , y 1 ) , ( x 1 , y 1 ) . . . , ( x 4 , y 4 ) } ,那么 Ein E i n 可以用权重来表达(反正数据有可能重复,有两个相同数据的话权重为2)

有了上述的背景之后,注意到下图
这里写图片描述
我们所需要的 gt g t 可以由如上定义,之前讲集成模型时,我们知道我们要尽可能地让 gt g t 不相同,这样多样化的模型集成起来往往有奇效(回忆一下纵横分割,纵横是两个极端的分类),本算法是这样定义“不相同”的。

假设我们已经有了 gt g t ,那么我们只要让 gt g t Ni=1u(t+1)n[ynh(xn)] ∑ i = 1 N u n ( t + 1 ) [ y n ≠ h ( x n ) ] ,在 h(x)=gt(x) h ( x ) = g t ( x ) 时表现很差即可,即如上图黄色部分所示,“差”到和直接丢铜板看正反没有区别,

这里写图片描述

如红框所示,我们只需要让橙框=绿框即可,最简单的,若在上一轮中 utn u n t 正确分类有6211个,错误分类有1126个,那么只要直接让
这里写图片描述
即可保证橙框=绿框,更一般地我们用概率来表示(实际上是除了一个分母),我们可以有
这里写图片描述
而本算法再定义了一个新的指标,即

Δt=1ϵtϵt, Δ t = 1 − ϵ t ϵ t ,

然后由下式在更新 ut u t
这里写图片描述
于是我们有,假设此时 ϵ12 ϵ ≤ 1 2 ,即本轮 错误率比丢铜板要好,那么我们就有 Δ1 Δ ≥ 1 ,于是我们根据这里给出的更新公式就知道错误率提升了,正确率下降了(这里指的是本轮的算法 gt g t 将会在新的 u(n+1)t u t ( n + 1 ) 上表现很差,即有了差别很大的 gt+1 g t + 1

这里写图片描述

之前没有说得太清楚, gt g t 的产生是在给定 D D ut的时候由某种算法产生的,如果用SVM或者logistic的话,会有
这里写图片描述

接下来,本文算法作者令权重为 Δ Δ 的自然对数,这样的好处是,当本轮的错误率很高(和丢铜板一样)的话,那么权重会接近0,若错误率很低,接近0的话,此时权重会趋于无穷大,这是合理的。

这里写图片描述

算法的完整图
这里写图片描述

从VC bound的角度来看,已经证明了,只要每次的错误率都比丢铜板要好一些些(即小于0.5),那么大概只要 T=O(logN) T = O ( l o g N ) 次的迭代就可以将 Ein E i n 降到足够小。
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值