n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
上图为 8 皇后问题的一种解法。
给定一个整数 n,返回所有不同的 n 皇后问题的解决方案。
每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。
示例:
输入: 4
输出: [
[".Q…", // 解法 1
“…Q”,
“Q…”,
“…Q.”],
["…Q.", // 解法 2
“Q…”,
“…Q”,
“.Q…”]
]
解释: 4 皇后问题存在两个不同的解法。
private List<List<String>> res;
//col[n]表示第n列是否有棋子
private boolean[] col;
//dia1[n]表示第n个从右上到左下的对角线是否有棋子
private boolean[] dia1;
//dia2[n]表示第n个从左上到右下的对角线是否有棋子
private boolean[] dia2;
public List<List<String>> solveNQueens(int n) {
res = new ArrayList<>();
col = new boolean[n];
dia1 = new boolean[n*2-1];
dia2 = new boolean[n*2-1];
if (n==0){
return res;
}
putQueen(n,0,new ArrayList<>());
return res;
}
//往第index行放置棋子,row[i]表示第i行棋子所在的列
private void putQueen(int n, int index, ArrayList<Integer> row) {
if (index==n){
res.add(generateBoard(row));
return;
}
for (int i = 0 ; i<n ; i++){
if (!col[i] && !dia1[index+i] && !dia2[index-i+n-1]){
row.add(i);
col[i] = true;
dia1[index+i] = true;
dia2[index-i+n-1] = true;
putQueen(n, index+1, row);
row.remove(row.size()-1);
col[i] = false;
dia1[index+i] = false;
dia2[index-i+n-1] = false;
}
}
}
private List<String> generateBoard(ArrayList<Integer> row) {
List<String> res = new ArrayList<>();
int n = row.size();
for (Integer col : row) {
StringBuilder sb = new StringBuilder();
for (int j = 0; j < n; j++) {
if (j == col) {
sb.append("Q");
} else {
sb.append(".");
}
}
res.add(sb.toString());
}
return res;
}