以下简称
- 二阶线性齐次微分方程 为 齐
- 二阶线性非齐次微分方程 为 非齐
重要的性质、定理(共6条):
证明1:若y1、y2、y3是非齐的解,a、b、c为常数且a+b+c=0,y=a y1+by2+cy3则y是齐的解
由(7) ,则需要证明a y1+by2+cy3是 齐的解。
因为y1、y2、y3是非齐的解,故y1-y2、y2-y3是齐的解,则
C1(y1-y2)+C2(y2-y3)也是齐的解
故C1(y1-y2)+C2(y2-y3)就是齐的解
显然y1的系数=C1=a
y2的系数=-C1+C2=b
y3的系数=-C2=c
a+b+c=0
证明2: 若y1、y2、y3是非齐的解,a、b、c为常数且a+b+c=1,y=a y1+by2+cy3 则y是非齐的解
由(1),则需要证明a y1+by2+cy3是非齐的解+齐的解
因为y1、y2、y3是非齐的解,故y1-y2、y2-y3是齐的解,则
C1(y1-y2)+C2(y2-y3)也是齐的解,而y3是非齐的解,
故C1(y1-y2)+C2(y2-y3)+y3就是非齐的解
显然y1的系数=C1=a
y2的系数=-C1+C2=b
y3的系数=-C2+1=c
a+b+c=1
证明3:若y1、y2、y3是非齐的线性无关解,a、b、c为任意常数且a+b+c=0,
y=a y1+by2+cy3,则y是齐的通解
由(7)
y1、y2、y3是非齐的线性无关解,现假设y1-y2、y2-y3也是线性无关的,
则齐的通解y=C1(y1-y2)+C2(y2-y3)
显然y1的系数=C1=a
y2的系数=-C1+C2=b
y3的系数=-C2=c
a+b+c=0
补充证明:现证明y1-y2、y2-y3是线性无关的。
假设线性有关,则存在不全为0的k1和k2,
使得k1(y1-y2)+k2(y2-y3)恒等于0
即:
(k1)y1+(k2-k1)y2-(k2)y3恒等于0
由于y1、y2、y3是线性无关的,故k1=0、k2=0,与假设相违背。因此,y1-y2、y2-y3是线性无关的。
证明4:若y1、y2、y3是非齐的线性无关解,a、b、c为任意常数且a+b+c=1,y=a y1+by2+cy3,则y是非齐的通解
由(5)
y1、y2、y3是非齐的线性无关解,现假设y1-y2、y2-y3也是线性无关的,
则齐的通解y=C1(y1-y2)+C2(y2-y3) ,
非齐的解为y3(你换成y1或者y2都是一样的,因为最后大家系数都是要加在一起的)
显然y1的系数=C1=a
y2的系数=-C1+C2=b
y3的系数=-C2+1=c
a+b+c=1