这里是题目描述:LeetCode-72.编辑距离 动态规划
动态规划解题方法
建立一个用于动态规划的二维表dp,行数和列数分别为word1.length+1和word2.length+1;其中dp[i][j]记录由word1[0:i-1]转化成word2[0:j-1](即:word1从0开始计数的前i-1个字符组成的子串和word2从0开始计数的前j-1个字符组成的子串)所需要的最少操作次数;其中第0行dp[0][n]和第0列dp[n][0]分别记录由空串转成word2子串和由word1子串转化成空串需要的操作次数
更新dp表方法如下图所示:
对于dp表的首行和首列,有dp[0][j]=j、dp[i][0]=i,代表空串与非空串之间转化需要的操作次数
对于dp表的其他行和列,若word1[i-1]==word2[j-1],则dp[i][j]=dp[i-1][j-1],表示所需操作次数和dp[i-1][j-1]相等,不需要新增操作;若word1[i-1]!=word2[j-1],则dp[i][j]=max(dp[i-1][j]+1,dp[i][j-1]+1,dp[i-1][j-1]+1),表示从当前删除、增加、替换三种操作中选出所需操作总数最小的
状态转移方程:
dp[i][j]=j //i==0
dp[i][j]=i //j==0
dp[i][j]=dp[i-1][j-1] //i!=0 && j!=0 && word1[i-1]==word2[j-1]
dp[i][j]=max(dp[i-1][j-1]+1,dp[i-1][j]+1,dp[i][j-1]+1) //i!=0 && j!=0 && word1[i-1]!=word2[j-1]
题解代码:
class Solution {
public int minDistance(String word1, String word2) {
int[][] dp=new int[word1.length()+1][word2.length()+1]; //dp[i][j]记录word1[0:i-1]到word2[0:j-1]需要的最少操作数
for(int j=0;j<dp[0].length;j++) //dp的第0行,表示从空单词到word2需要的最少操作数,为了便于后面计算
{
dp[0][j]=j; //"插入"操作
}
for(int i=0;i<dp.length;i++) //dp的第0列,表示从word1到空单词需要的最少操作数,为了便于后面计算
{
dp[i][0]=i; //"插入"操作
}
for(int i=1;i<dp.length;i++)
{
for(int j=1;j<dp[i].length;j++)
{
if(word1.charAt(i-1)==word2.charAt(j-1))
{
dp[i][j]=dp[i-1][j-1]; //当前字符相等,不需要额外操作
}
else
{
//当前字符不相等,对比替换、增加、删除三种操作后的总操作数,选择总数最小的
dp[i][j]=Math.min(dp[i-1][j-1]+1,Math.min(dp[i][j-1]+1,dp[i-1][j]+1));
}
}
}
return dp[dp.length-1][dp[0].length-1];
}
}
设word1.length=m,word2.length=n
时间复杂度:O(mn)
空间复杂度:O(mn)