决策树tree.export_graphviz的参数

sklearn.tree.export_graphviz(decision_tree, out_file=None, *, max_depth=None, feature_names=None, class_names=None, label='all', filled=False, leaves_parallel=False, impurity=True, node_ids=False, proportion=False, rotate=False, rounded=False, special_characters=False, precision=3, fontname='helvetica')

以 DOT 格式导出决策树。

此函数生成决策树的 GraphViz 表示,然后将其写入 out_file 。导出后,可以使用以下命令生成图形渲染:

$ dot -Tps tree.dot -o tree.ps      (PostScript format)
$ dot -Tpng tree.dot -o tree.png    (PNG format)

显示的样本计数使用可能存在的任何 sample_weights 进行加权。

参数

decision_tree决策树分类器

要导出到 GraphViz 的决策树。

out_file对象或字符串,默认=无

输出文件的句柄或名称。如果 None ,则结果以字符串形式返回。

max_depth整数,默认=无

表示的最大深度。如果没有,则完全生成树。

feature_namesstr列表,默认=无

每个函数的名称。如果 None 将使用通用名称(“feature_0”、“feature_1”、...)。

class_namesstr 或 bool 的列表,默认 = 无

每个目标类别的名称按数字升序排列。仅与分类相关,不支持multi-output。如果 True ,则显示类名的符号表示。

label{‘all’, ‘root’, ‘none’},默认='全部'

是否显示杂质标签等。选项包括‘all’ 显示在每个节点,‘root’ 仅显示在顶部根节点,或‘none’ 不显示在任何节点。

filled布尔,默认=假

当设置为 True 时,绘制节点以指示分类的多数类、回归值的极值或 multi-output 的节点纯度。

leaves_parallel布尔,默认=假

当设置为 True 时,在树的底部绘制所有叶节点。

impurity布尔,默认=真

当设置为 True 时,显示每个节点的杂质。

node_ids布尔,默认=假

当设置为 True 时,在每个节点上显示 ID 号。

proportion布尔,默认=假

当设置为 True 时,将 ‘values’ 和/或 ‘samples’ 的显示分别更改为比例和百分比。

rotate布尔,默认=假

当设置为 True 时,将树从左到右而不是自上而下。

rounded布尔,默认=假

当设置为 True 时,绘制圆角节点框。

special_characters布尔,默认=假

当设置为 False 时,忽略特殊字符以兼容 PostScript。

precision整数,默认=3

每个节点的杂质、阈值和值属性值中浮点精度的位数。

fontnamestr,默认='helvetica'

用于呈现文本的字体名称。

返回

dot_datastr

GraphViz 点格式的输入树的字符串表示形式。仅在 out_file 为 None 时返回。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值