目录
1.数据准备
import pandas as pd
df = pd.read_csv('/data/Mall_Customers_nom.csv')
df.head()

- as_index默认为True,即返回以组标签作为索引的对象。下例,Gender作为索引返回。
gender_df = df.groupby("Gender", as_index=True).agg({'CustomerID':'count'})
gender_df

- as_index=False时,分组以列的方式返回,类SQL的分组。下例,Gender作为列名返回。
gender_df = df.groupby("Gender", as_index=False).agg({'CustomerID':'count'})
gender_df

2.聚合重命名的几种方法
2.1 rename,注意这里agg里是大括号{}
gender_df2 = df.groupby("Gender", as_index=False)\
.agg({'CustomerID':'count'})\
.rename(columns={'CustomerID': 'user_count'})
2.2 agg(’new列名‘=(’列名‘, ’统计方法‘)),注意是括号(),as_index须为True,即作为索引返回。
gender_df3 = df.groupby("Gender")\
.agg(user_count=('CustomerID','count'))
2.3 groupby(as_index=False)['列名']的方式,注意这种方式as_index须为False。
gender_df4 = df.groupby('Gender', as_index=False)['CustomerID']\
.agg({"user_count": "count"})
本文介绍了Pandas库中数据聚合和重命名的方法,包括使用`groupby()`函数配合`agg()`进行数据计数,通过`as_index`参数控制返回结果的索引方式。同时展示了如何利用`rename()`、`agg()`内的别名定义以及直接操作列名进行重命名。这些技巧对于数据处理和分析非常实用。
778

被折叠的 条评论
为什么被折叠?



