Python - pandas - groupby+agg聚合重命名解决办法

本文介绍了Pandas库中数据聚合和重命名的方法,包括使用`groupby()`函数配合`agg()`进行数据计数,通过`as_index`参数控制返回结果的索引方式。同时展示了如何利用`rename()`、`agg()`内的别名定义以及直接操作列名进行重命名。这些技巧对于数据处理和分析非常实用。
摘要由CSDN通过智能技术生成

目录

1.数据准备

2.聚合重命名的几种方法


1.数据准备

import pandas as pd
df = pd.read_csv('/data/Mall_Customers_nom.csv')
df.head()

 

  •  as_index默认为True,即返回以组标签作为索引的对象。下例,Gender作为索引返回。
gender_df = df.groupby("Gender", as_index=True).agg({'CustomerID':'count'})
gender_df

 

  • as_index=False时,分组以列的方式返回,类SQL的分组。下例,Gender作为列名返回。
gender_df = df.groupby("Gender", as_index=False).agg({'CustomerID':'count'})
gender_df

2.聚合重命名的几种方法

2.1 rename,注意这里agg里是大括号{}

gender_df2 = df.groupby("Gender", as_index=False)\
    .agg({'CustomerID':'count'})\
    .rename(columns={'CustomerID': 'user_count'})

2.2 agg(’new列名‘=(’列名‘, ’统计方法‘)),注意是括号(),as_index须为True,即作为索引返回。

gender_df3 = df.groupby("Gender")\
        .agg(user_count=('CustomerID','count'))

 2.3 groupby(as_index=False)['列名']的方式,注意这种方式as_index须为False。

gender_df4 = df.groupby('Gender', as_index=False)['CustomerID']\
        .agg({"user_count": "count"})

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值