二维特征的ROC绘制

这段代码展示了如何在Python中使用sklearn库之外的方法,处理二维特征来计算ROC曲线。作者通过生成随机数据,创建了两个类别的二维特征值,并手动实现了特征阈值遍历及真阳性、真阴性、假阳性、假阴性计数,从而绘制ROC曲线。
摘要由CSDN通过智能技术生成

常用的sklearn在正常调用时只能用一维的pre和label计算得到ROC,但是二维及以上特征的没找到可以直接调用的库,因此自己写一个,不确定对不对。
`

import numpy as np
import matplotlib.pyplot as plt
import random
a1=random.sample(range(0,100),51)
b1=random.sample(range(0,100),51)
a2=random.sample(range(60,180),55)
b2=random.sample(range(50,150),55)
a=a1+a2
b=b1+b2
sp=[]
for i in range(len(a)):
    sp.append([a[i], b[i]])
label1 = [0] * 51
label2 = [1] * 55
label = label1+label2

sort_a = sorted(list(set(a)))
sort_b = sorted(list(set(b)))
fin = [[]]*(len(set(a))+len(set(b))-1)
for numi,i in enumerate(sort_a ):   # a阈值
    for numj, j in enumerate(sort_b ):   # b阈值
        fin[numi+numj]=[(sp_result[0] >= i and sp_result[1] >= j) for sp_result in sp]

TP = 0
FP = 0
FN = 0
TN = 0
TPR = []
FPR = []
position =[]
for preid, pre in enumerate(fin):
    for id, ele in enumerate(pre):
        if label[id] == 1 and ele is True:
            TP += 1
        if label[id] == 0 and ele is True:
            FP += 1
        if label[id] == 1 and ele is False:
            FN += 1
        if label[id] == 0 and ele is False:
            TN += 1
    TPR.append(TP/(TP+FN))
    FPR.append(FP/(FP+TN))
    position.append([FP/(FP+TN),TP/(TP+FN)])  #[FPR,TPR]
    TP = 0
    FP = 0
    FN = 0
    TN = 0

position = np.array(position)

plt.plot(position[:, 0], position[:, 1], 'bo-')
plt.show()

`

代码中a1,b1为类别1的二维特征值,a2,b2为类别2的二维特征值。

好的,关于绘制ROC曲线的问题,首先需要了解ROC曲线的含义和作用。 ROC曲线是一种绘制真正率(TPR)和假正率(FPR)的二维曲线图,通常用于评估一个二元分类器的性能。其中TPR是指被正确预测为正类/真实为正类的样本占真实正类样本的比率;FPR是指被错误预测为正类/真实为负类的样本占真实负类样本的比率。ROC曲线的图像越接近左上角,说明模型性能越好。 下面详细介绍绘制ROC曲线的步骤: 1. 首先导入必要的库,包括numpy、matplotlib和sklearn.metrics。 ``` import numpy as np from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt ``` 2. 假设我们有一个二元分类器,其预测值和真实值分别为y_pred和y_true,对它们进行ROC曲线绘制。 ``` fpr, tpr, thresholds = roc_curve(y_true, y_pred) roc_auc = auc(fpr, tpr) ``` 其中,roc_curve函数可以计算各种阈值下的真正率和假正率,而auc函数则可以计算ROC曲线下的面积。 3. 将计算得到的真正率和假正率传入matplotlib.pyplot的plot函数中,绘制ROC曲线。 ``` plt.plot(fpr, tpr, lw=1, alpha=0.8, label='ROC curve (AUC = %0.2f)' % (roc_auc)) ``` 其中lw参数控制曲线的线宽度,alpha参数控制曲线的透明度,label参数控制曲线的标签。 4. 绘制参考线,包括直线y=x和曲线AUC=0.5的参考线。 ``` plt.plot([0, 1], [0, 1], color='navy', lw=1, linestyle='--') plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--') ``` 其中,color参数控制线的颜色,linestyle参数控制线的线型。 5. 添加图例和标签等,使绘图更加美观。 ``` plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver Operating Characteristic (ROC) Curve') plt.legend(loc="lower right") plt.show() ``` 其中,xlabel和ylabel函数分别控制x轴和y轴的标签,title函数控制图像的标题,legend函数控制图例的位置。 绘制完毕后,我们就可以通过ROC曲线来评估分类器的性能,并根据需要调整分类器的参数来改进性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值