二维特征的ROC绘制

这段代码展示了如何在Python中使用sklearn库之外的方法,处理二维特征来计算ROC曲线。作者通过生成随机数据,创建了两个类别的二维特征值,并手动实现了特征阈值遍历及真阳性、真阴性、假阳性、假阴性计数,从而绘制ROC曲线。
摘要由CSDN通过智能技术生成

常用的sklearn在正常调用时只能用一维的pre和label计算得到ROC,但是二维及以上特征的没找到可以直接调用的库,因此自己写一个,不确定对不对。
`

import numpy as np
import matplotlib.pyplot as plt
import random
a1=random.sample(range(0,100),51)
b1=random.sample(range(0,100),51)
a2=random.sample(range(60,180),55)
b2=random.sample(range(50,150),55)
a=a1+a2
b=b1+b2
sp=[]
for i in range(len(a)):
    sp.append([a[i], b[i]])
label1 = [0] * 51
label2 = [1] * 55
label = label1+label2

sort_a = sorted(list(set(a)))
sort_b = sorted(list(set(b)))
fin = [[]]*(len(set(a))+len(set(b))-1)
for numi,i in enumerate(sort_a ):   # a阈值
    for numj, j in enumerate(sort_b ):   # b阈值
        fin[numi+numj]=[(sp_result[0] >= i and sp_result[1] >= j) for sp_result in sp]

TP = 0
FP = 0
FN = 0
TN = 0
TPR = []
FPR = []
position =[]
for preid, pre in enumerate(fin):
    for id, ele in enumerate(pre):
        if label[id] == 1 and ele is True:
            TP += 1
        if label[id] == 0 and ele is True:
            FP += 1
        if label[id] == 1 and ele is False:
            FN += 1
        if label[id] == 0 and ele is False:
            TN += 1
    TPR.append(TP/(TP+FN))
    FPR.append(FP/(FP+TN))
    position.append([FP/(FP+TN),TP/(TP+FN)])  #[FPR,TPR]
    TP = 0
    FP = 0
    FN = 0
    TN = 0

position = np.array(position)

plt.plot(position[:, 0], position[:, 1], 'bo-')
plt.show()

`

代码中a1,b1为类别1的二维特征值,a2,b2为类别2的二维特征值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值