前面,小编和大家一起学习了图形可视化、描述性统计、假设检验等基本统计方法,接下来,我们将构建模型进一步研究数据间的关系,根据目标变量的类别,划分为回归与分类。
目标变量为连续型变量的模型称为回归模型;
目标变量为分类型变量的模型称为分类模型。
今天,先从SPSS Modeler 进行一元线性回归分析开始学习。
案例:数据文件“房产价格分析V1.xlsx”。
数据展示:
类型节点中定义变量角色:
回归节点:
数据流:
前面,小编和大家一起学习了图形可视化、描述性统计、假设检验等基本统计方法,接下来,我们将构建模型进一步研究数据间的关系,根据目标变量的类别,划分为回归与分类。
目标变量为连续型变量的模型称为回归模型;
目标变量为分类型变量的模型称为分类模型。
今天,先从SPSS Modeler 进行一元线性回归分析开始学习。
案例:数据文件“房产价格分析V1.xlsx”。
数据展示:
类型节点中定义变量角色:
回归节点:
数据流: