SPSS Modeler 神经网络实践案例(第十四章)

本文介绍了使用SPSS Modeler进行神经网络分析的步骤,包括数据准备、建模设置、模型结果和评估。在数据准备阶段,利用类型节点进行实例化并定义字段角色,再通过分区节点对数据进行划分。建模设置涉及多种选项,如目标、基本、中止规则和高级选项。模型结果展示了模型概要、预测变量重要性、分类、网络信息。最后,对模型结果进行了评估。
摘要由CSDN通过智能技术生成

在这里插入图片描述

今天,小编和大家一起学习应用SPSS Modeler软件进行神经网络分析。
首先,来看一下神经网络的结构。
神经网络是一种试图模拟生物神经网络的结构和功能的数学模型或计算模型。神经网络一共包括三个层级:输入层、隐藏层和输出层。
在这里插入图片描述

  • 输入层:负责接收输入信息,数量对应多个输入属性特征,即有多少个输入变量则有多少个输入节点;其中最后一个节点是偏置,可以理解为一个常数项输入。
  • 输出层:负责输出最终预测结果。对于输出变量是连续型或是二分类问题,输出层只需要一个节点即可完成任务。而在多分类任务中,输出变量含有q个分类,则需要q个输出节点。
  • 隐藏层:介于输入层或输出层中间,主要对样本实现进行线性变换。一个神经网络可以含有0个或多个隐藏层。

神经网络结构就是由多个神经元相互组合而成的,而神经网络的学习过程就是连接权重的更新训练过程。

神经元的工作原理:
在这里插入图片描述

神经网络的工作

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值