20240324-1-集成学习面试题EnsembleLearning

集成学习面试题

在这里插入图片描述

1. 什么是集成学习算法?

集成学习算法是一种优化手段或者策略,将多个较弱的模型集成模型组,一般的弱分类器可以是决策树,SVM,KNN等构成。其中的模型可以单独进行训练,并且它们的预测能以某种方式结合起来去做出一个总体预测。

2. 集成学习主要有哪几种框架?

集成学习从集成思想的架构分为Bagging,Boosting,Stacking三种。

3. 简单介绍一下bagging,常用bagging算法有哪些?

  • Bagging

    • 多次采样,训练多个分类器,集体投票,旨在减小方差
  • 基于数据随机重抽样的分类器构建方法。从训练集中进行子抽样组成每个基模型所需要的子训练集,对所有基模型预测的结果进行综合产生最终的预测结果。

  • 算法流程:

    • 输入为样本集D=(x1,y1),(x2,y2)…(xm,ym)D={(x_1,y_1),(x_2,y_2) \dots (x_m,y_m)}D=(x1y1)(x2y2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

武昌库里写JAVA

您的鼓励将是我前进的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值