- 原文链接 楞伽山人帖–时间序列预测ARIMR
- 概要
- 平稳性
- 回归模型
- 自回归模型
- 滑动平均模型
- 自回归移动平均结合模型
- 差分法
- 差分移动平均自回归模型
- ARIMA计算步骤
1.概要
ARIMA模型由Box与Jenkins于上世纪七十年代提出,是一种著名的时间序列预测方法。ARIMA的含义是单积自回归移动平均过程,其含义为:假设一个随机过程含有d个单位根,其经过d次差分后可以变换为一个平稳的自回归移动平均过程,则该随机过程称为单积(整)自回归移动平均过程。
-
名称解读
AR: 自回归模型 Autoregressive model I : 差分 MA: 滑动平均模型 Moving average model
-
本质
线性回归,只不过是通过自身的历史数据进行回归,适用于数据本身存在着较高并且稳定的相关性,特点是简单、短期预测效果不错。
2.平稳性
-
平稳性就是要求经由样本时间序列所得到的拟合曲线,在未来的一段时间内仍能顺着现有状态“惯性”地延续下去;
-
平稳性要求序列的均值和方差不发生明显变化;
平稳性要求序列的均值和方差不发生明显变化;
s^2 = \frac{\sum_{i=1}^{N}(x_n-m)^2}{N}
s^2 总体方差 x变量 m 总体均值
3.回归模型
- 得一个线性模型以尽可能准确地预测实值输出标记
y = w_1*x_1+w_2*x_2+w_3*x_3+...+w_i*x_i+e
y: 因变量 x:自变量
w和b根据样本学得(最小二乘法或者最大似然估计或者神经网络)之后,模型就得以确定。w直观表达了各属性在预测中的重要性
4.自回归模型(AR Autoregressive model)
- 和线性回归的区别
线性回归是由一个或者多个自变量推导预测因变量
自回归是由因变量之前的取值来推导预测本身,所以是自回归(受自身变化的影响)
- AR 模型
Y t = w 1 ∗ Y t − 1 + w 2 ∗ Y t − 2 + w 3 ∗ Y t − 3 + . . . + w i ∗ Y t − k + e Y_t = w_1*Y_{t-1}+w_2*Y_{t-2}+w_3*Y_{t-3}+...+w_i*Y_{t-k}+e Yt=w1∗Yt−1+w2∗Yt−2+w3∗Yt−3+...+wi∗Yt−k+e
自变量不是影响因变量的外界因素,而是因变量本身
5.滑动平均模型 (MA moving average model)
- 假定预测对象有一种水平样式,含有随机波动成分,可以采用简单指数平滑法进行短期预测
F t + 1 = F t + a ( Y t − F t ) = F t + a ( e t ) F_{t+1} = F_{t} + a(Y_t-F_t)=F_{t}+a(e_t) Ft+1=Ft</