时间序列预测ARIMR(Spark scala,Python)

本文介绍了ARIMA模型,一种常用的时间序列预测方法,包括平稳性、自回归模型、滑动平均模型、自回归移动平均模型等概念,并提供了Scala和Python的实现。通过差分处理使非平稳序列变得平稳,然后利用ARIMA(p,d,q)模型进行预测。" 105334177,8635795,深入理解Android Activity:启动、生命周期与Intent过滤,"['Android开发', 'Activity管理', 'Intent使用']
摘要由CSDN通过智能技术生成
  1. 概要
  2. 平稳性
  3. 回归模型
  4. 自回归模型
  5. 滑动平均模型
  6. 自回归移动平均结合模型
  7. 差分法
  8. 差分移动平均自回归模型
  9. ARIMA计算步骤

1.概要

ARIMA模型由Box与Jenkins于上世纪七十年代提出,是一种著名的时间序列预测方法。ARIMA的含义是单积自回归移动平均过程,其含义为:假设一个随机过程含有d个单位根,其经过d次差分后可以变换为一个平稳的自回归移动平均过程,则该随机过程称为单积(整)自回归移动平均过程。

  • 名称解读

      AR: 自回归模型   Autoregressive model
      I : 差分        
      MA: 滑动平均模型 Moving average model
    
  • 本质

    线性回归,只不过是通过自身的历史数据进行回归,适用于数据本身存在着较高并且稳定的相关性,特点是简单、短期预测效果不错。


2.平稳性

  • 平稳性就是要求经由样本时间序列所得到的拟合曲线,在未来的一段时间内仍能顺着现有状态“惯性”地延续下去;

  • 平稳性要求序列的均值和方差不发生明显变化;
    平稳性要求序列的均值和方差不发生明显变化;

s^2 = \frac{\sum_{i=1}^{N}(x_n-m)^2}{N}

s^2 总体方差 x变量 m 总体均值


3.回归模型

  • 得一个线性模型以尽可能准确地预测实值输出标记
y = w_1*x_1+w_2*x_2+w_3*x_3+...+w_i*x_i+e

y: 因变量 x:自变量

w和b根据样本学得(最小二乘法或者最大似然估计或者神经网络)之后,模型就得以确定。w直观表达了各属性在预测中的重要性


4.自回归模型(AR Autoregressive model)

  • 和线性回归的区别

线性回归是由一个或者多个自变量推导预测因变量

自回归是由因变量之前的取值来推导预测本身,所以是自回归(受自身变化的影响)

  • AR 模型
    Y t = w 1 ∗ Y t − 1 + w 2 ∗ Y t − 2 + w 3 ∗ Y t − 3 + . . . + w i ∗ Y t − k + e Y_t = w_1*Y_{t-1}+w_2*Y_{t-2}+w_3*Y_{t-3}+...+w_i*Y_{t-k}+e Yt=w1Yt1+w2Yt2+w3Yt3+...+wiYtk+e
    自变量不是影响因变量的外界因素,而是因变量本身

5.滑动平均模型 (MA moving average model)

  • 假定预测对象有一种水平样式,含有随机波动成分,可以采用简单指数平滑法进行短期预测

F t + 1 = F t + a ( Y t − F t ) = F t + a ( e t ) F_{t+1} = F_{t} + a(Y_t-F_t)=F_{t}+a(e_t) Ft+1=Ft</

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值