kaldi_关于数据预处理 kaldi关于数据预处理基本数据四个预处理文件wav.scp 每条语音的 ID 及其存储路径wav_id(音频id)wav_path(文件路径)sen_1/home/kaldi/data/sen_1.wavsen_2/home/kaldi/data/sen_2.wavtext 每条语音的 ID 及其对应文本wav_id(音频id)text(文本)sen_1中国共产党成立100周年utt2spk 每条语音的 ID 及其说话
开源向量数据库--milvus Milvus 是一款开源的向量相似度搜索引擎,支持针对 TB 级向量的增删改操作和近实时查询,具有高度灵活、稳定可靠以及高速查询等特点。Milvus 集成了 Faiss、NMSLIB、Annoy 等广泛应用的向量索引库,提供了一整套简单直观的 API,让你可以针对不同场景选择不同的索引类型。此外,Milvus 还可以对标量数据进行过滤,进一步提高了召回率,增强了搜索的灵活性。特性异构计算优化了基于 GPU 搜索向量和建立索引的性能可以在单台通用服务器上完成对 TB 级数据的毫秒级搜索动态.
Neo4J 介绍、安装以及使用(附带示例) Neo4J 介绍与安装知识图谱由于其数据包含实体、属性、关系等,常见的关系型数据库诸如MySQL之类不能很好的体现数据的这些特点,因此知识图谱数据的存储一般是采用图数据库(Graph Databases)。而Neo4j是其中最为常见的图数据库。在Mac或者Linux中,安装好jdk后,直接解压下载好的Neo4J包,运行命令 bin/neo4j startwindows系统下载好neo4j和jdk 1.8.0后,输入以下命令启动后neo4j neo4j.bat consoleNe
MAB多臂赌博机---汤普森采样算法 汤普森采样算法原理假设每个臂是否产生收益,决定于背后的一个概率分布,及产生收益的概率为p,每个臂对应的概率分布得出各自的随机数,最大的就是收益最高的根据每次收益情况调整对应的概率分布核心 (Beta)贝塔分布贝塔分布: 是一种连续性概率密度分布,由形状参数(a,b)表示,一般用于伯努利事件成功概率的概率分布,定义域在(0,1)之间伯努利试验:在同样的条件下重复地、相互独立地进行的一种随机试验 并且只有两种可能结果:发生或者不发生分布特点:对于不同的形状参数 a,b分布很宽 a+b
拉格朗日乘法解决约束条件下的最优问题 拉格朗日乘数法寻找变量受一个或多个条件所限制的多元函数极值方法。将n个变量和k个约束的最优问题转换为n+k变量的方程组极值问题,变量没有约束。拉格朗日乘数:约束方法梯度的线性组合中各向量的系数(法向量的系数)用拉格朗日乘法解决约束条件下的最优问题二元类型目标函数:f(x,y) = x^2+4*y^2 -2*x+8y约束条件:x+2*y=7最优问题:在约束条件下找目标函数f(x,y)的最小值几何问题:目标函数为一个椭圆,约束条件为直线,最优问题在几何上表现为,椭圆经
Python调用电脑麦克风录音 import waveimport pyaudio定义数据流块CHUNK = 1024FORMAT = pyaudio.paInt16CHANNELS = 2RATE = 44100录音时间RECORD_SECONDS = 5要写入的文件名WAVE_OUTPUT_FILENAME = “output.wav”创建PyAudio对象p = pyaudio.PyAudio()打开数据流stream = p.open(format=FORMAT,chann
Docker命令记录 查看已有容器docker images命令行模式进入该容器docker run -it ubuntu /bin/bash由镜像启动容器docker run -itd -p 5000:5000 -w /app/labproject ubuntu_defecte_class:base_line python3 app.py-p 容器内外端口映射 主机:容器-P 容器内端口随机映射到主机-d 容器后台运行-v 主机文件夹映射到容器内进入启动的容器docker psdock.
强化学习-马尔克夫决策过程和贝尔曼方程 马尔科夫决策链 Markov Decision Process(MDP)a(finite) set of actions 动作空间 A(search,recharge,wait)a(finite) set of states 电池状态 S high lowa(finite) set of rewards 奖励 Rone-step dynamics of the environment 一步动态特性 (动态特性函数p)a discount rate 折扣率 伽马 【0-1】 越大对未来的奖励越.
JupyterNotebook调试spark 下载 spark下载 hadoop下载 winutils.exe 放在 hadoop_home/bin配置环境变量将spark /jars 下的 py4j-0.10.7.jar 解压到python环境Lib\site-packages下pip install pypiwin32启动sparkimport osimport sysspark_home = os.environ.get('SPARK_HOME', None)if not spark_home: rais.
正则化的线性回归 岭回归、Lasso回归 文章目录概述岭回归效果Lasso回归效果线性回归效果概述正则化的线性回归岭回归就是正则化的线性回归,线性回归容易出现过拟合,正则化是防止过拟合的常用方法。换句话说是修正后的最小二乘法。线性回归的误差函数f(w) = \frac{1}{2}\sum_{i=1}^{n}{(y-y`)^2}优化的误差函数是原来线性回归的均方误差上加上L2范数的惩罚项(修正项),惩罚模型的复杂程度。f(w) = \frac{1}{2}\sum_{i=1}^{n}{(y-y`)^2}+\frac{1}{2}a*\
RoBERTa RoBERTa模型是在RoBERTa中提出的:一种经过严格优化的BERT预训练方法, 由Yinhan Liu,Myle Ott,Naman Goyal,Dujingfei,Mandar Joshi,Danqi Chen,Omer Levy,Mike Lewis,Luke Zettlemoyer,Veselin Stoyanov提出。它基于2018年发布的Google BERT模型。它建立在BER...
huggingface tokenizers 专注 NLP 的初创团队抱抱脸(hugging face)发布帮助自然语言处理过程中,更快的词语切分(tokenization)工具:Tokenizers —— 只要 20 秒就能编码 1GB 文本。功能多样:适用于 BPE / byte-level-BPE / WordPiece / SentencePiece 各种 NLP 处理模型可以完成所有的预处理:截断(Truncate)、...
开源语音数据集 开源语音数据集英文数据集:LibriSpeech ASR corpus:该数据集是包含大约1000小时的英语语音的大型语料库。这些数据来自LibriVox项目的有声读物。它已被分割并正确对齐,如果你正在寻找一个起点,请查看已准备好的声学模型,这些模型在kaldi-asr.org和语言模型上进行了训练,适合评估。https://www.openslr.org/12Mini Libri...
隐马尔科夫和端到端网络 @TOC欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。新的改变我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:全新的界面设计 ,将会带来全...
词嵌入 概要词嵌入是单词的一种数值化表示方式,一般情况下会将一个单词映射到一个高维的向量中(词向量)来代表这个单词。例如我们将: 机器学习’表示为 [1,2,3]词向量可以用余弦相似度来计算单词之间的距离余弦相似度词嵌入词嵌入实际上是一种将各个单词在预定的向量空间中表示为实值向量的一类技术。每个单词被映射成一个向量(初始随机化),并且这个向量可以通过神经网络的方式来学习更新。因此这项技术基...
目标检测到实例分割 R-CNN 、Fast-CNN、Mask R-CNN R-CNNFast R-CNN和R-CNN不同的是一个图片只执行一次神经网络,在卷积后的特征图上,选取识别框提取roi特征进行分类Mask R-CNN在Fast R-CNN的基础上新增了像素级别的提取功能 ,和 Fast RCNN 区别在于,mask RCNN 用RoIAlign的方法来取代ROI pooling,保留大致的空间位置信息检测效果如下图参考文章...
挖掘导演最爱用的演员 关联规则-FPGrowph 概要FP的全称是Frequent Pattern,在算法中使用了一种称为频繁模式树(Frequent Pattern Tree)的数据结构。FP-tree是一种特殊的前缀树,由频繁项头表和项前缀树构成。FP-Growth算法基于以上的结构加快整个挖掘过程。ApriorApriori算法是常用的用于挖掘出数据关联规则的算法,它用来找出数据值中频繁出现的数据集合,找出这些集合的模式有助于我们...