拉格朗日乘数法
寻找变量受一个或多个条件所限制的多元函数极
值方法。将n个变量和k个约束的最优问题转换为
n+k变量的方程组极值问题,变量没有约束。
拉格朗日乘数:约束方法梯度的线性组合中各向量的系数(法向量的系数)
用拉格朗日乘法解决约束条件下的最优问题
二元类型
目标函数:
f ( x , y ) = x 2 + 4 ∗ y 2 − 2 ∗ x + 8 y f(x,y) = x^2+4*y^2 -2*x+8y f(x,y)=x2+4∗y2−2∗x+8y
约束条件:
x + 2 ∗ y = 7 x+2*y=7 x+2∗y=7
最优问题:在约束条件下找目标函数f(x,y)的最小值
几何问题:目标函数为一个椭圆,约束条件为直线,最优问题在几何上表现为,椭圆经过放大后和直线相交情况下最小面积。
-
确认目标函数
-
确认约束函数
g ( x , y ) = x + 2 ∗ y − 7 g(x,y)=x+2*y-7 g(x,y)=x+2∗y−7 -
拉格朗日求解极值点
-
确定最小值
-
拉格朗日求解极值点
f ‘ ( x , y ) = ( 2 x − 2 ) i + ( 8 y + 8 ) j f`(x,y)=(2x-2)i+(8y+8)j f‘(x,y)