拉格朗日乘法解决约束条件下的最优问题

本文介绍了拉格朗日乘数法在解决具有约束条件的多元函数极值问题中的应用。通过建立拉格朗日函数,将二元和三元类型的约束优化问题转化为求解极值点,进而找到目标函数的最小值。以实例详细阐述了如何利用该方法找到约束条件下的最优解。
摘要由CSDN通过智能技术生成

拉格朗日乘法解决约束条件下的最优问题

拉格朗日乘数法

寻找变量受一个或多个条件所限制的多元函数极
值方法。将n个变量和k个约束的最优问题转换为
n+k变量的方程组极值问题,变量没有约束。

拉格朗日乘数:约束方法梯度的线性组合中各向量的系数(法向量的系数)


用拉格朗日乘法解决约束条件下的最优问题

二元类型

目标函数:

f ( x , y ) = x 2 + 4 ∗ y 2 − 2 ∗ x + 8 y f(x,y) = x^2+4*y^2 -2*x+8y f(x,y)=x2+4y22x+8y

约束条件:
x + 2 ∗ y = 7 x+2*y=7 x+2y=7

最优问题:在约束条件下找目标函数f(x,y)的最小值

几何问题:目标函数为一个椭圆,约束条件为直线,最优问题在几何上表现为,椭圆经过放大后和直线相交情况下最小面积。

  1. 确认目标函数

  2. 确认约束函数
    g ( x , y ) = x + 2 ∗ y − 7 g(x,y)=x+2*y-7 g(x,y)=x+2y7

  3. 拉格朗日求解极值点

  4. 确定最小值

  5. 拉格朗日求解极值点

f ‘ ( x , y ) = ( 2 x − 2 ) i + ( 8 y + 8 ) j f`(x,y)=(2x-2)i+(8y+8)j f(x,y)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值