理解分布函数(概率论)

概率论中一个非常重要的函数就是分布函数,知道了随机变量的分布函数,就知道了它的概率分布,也就可以计算概率了。

一、理解好分布函数的定义:

F(x)=P(X≤x),

所以分布函数在任意一点x的值,表示随机变量落在x点左边(X≤x)的概率。它的定义域是(-∞,+∞),值域是[0,1].

二、掌握好分布函数的性质:

   (1)0≤F(x)≤1;

   (2)F(+∞)=1,F(-∞)=0;

可以利用这条性质确定分布函数中的参数,例如:

    设随机变量X的分布函数为:F(x)=A+Barctanx,求常数A与B.

就应利用本性质计算出A=1/2,B=1/π.

   (3)单调不减

   (4)右连续性

三、会利用分布函数求概率

  在利用分布函数求概率时,以下公式经常利用。

           (1)P(a<Xb)=F(b)-F(a);

           (2)P(aXb)=F(b)-F(a-0);

           (3)P(aX<b)=F(b-0)-F(a-0);

           (4)P(a<X<b)=F(b-0)-F(a);

           (5)P(X=a)=F(a)-F(a-0).

以上公式的规律是:

   对于左端点a,不包括它时,用函数值F(a),包括它时,用右极限F(a-0);

    对于右端点b,不包括它时,用右极限F(b-0),包括它时,用函数值F(b).

四、会利用分布列或密度函数求分布函数

   根据分布列求分布函数时,先将RVX的取值从小到大排好,x1<x2<...xn,则分布函数是一个n+1段的分段函数:

   xix<x(i+1)时,F(x)=p1+p2+...+pi,(i=1,2,...,n)

   x<x1时,F(x)=0.

  根据分布密度求分布函数时,先考虑密度函数是几段的,如果它被x1<x2<...xn分成n+1段的,则F(x)也被x1<x2<...<xn分成n+1段的。

  xix<x(i+1)时,F(x)=∫[-∞,x1]f1(x)dx+∫[x1,x2]f2(x)dx+...+∫[xi,x]f(i+1)(x)dx;

  x<x1时,F(x)=∫[-∞,x]f1(x)dx. 

五、会利用分布函数求分布列或密度函数

   如果分布函数是分段常数的,则它是离散型随机变量的分布函数,应求分布列。需要确定它取什么值,以及取这些值的概率。

它取的值就是分段函数的各段端点x1x2,...,xn,因为在其它点分布函数连续,它们的概率为0。而

P(X=xi)=F(xi)-F(xi-0).

  如果分布函数是连续的,则它是连续型随机变量的分布函数,应求分布密度。对于Fx)的可导点,密度函数f(x)=F'(x),对于F(x)的不可导点x0f(x0)的值你可以根据它周围点x的函数值自定。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值