概率论中一个非常重要的函数就是分布函数,知道了随机变量的分布函数,就知道了它的概率分布,也就可以计算概率了。
一、理解好分布函数的定义:
F(x)=P(X≤x),
所以分布函数在任意一点x的值,表示随机变量落在x点左边(X≤x)的概率。它的定义域是(-∞,+∞),值域是[0,1].
二、掌握好分布函数的性质:
(1)0≤F(x)≤1;
(2)F(+∞)=1,F(-∞)=0;
可以利用这条性质确定分布函数中的参数,例如:
设随机变量X的分布函数为:F(x)=A+Barctanx,求常数A与B.
就应利用本性质计算出A=1/2,B=1/π.
(3)单调不减;
(4)右连续性。
三、会利用分布函数求概率
在利用分布函数求概率时,以下公式经常利用。
(1)P(a<X≤b)=F(b)-F(a);
(2)P(a≤X≤b)=F(b)-F(a-0);
(3)P(a≤X<b)=F(b-0)-F(a-0);
(4)P(a<X<b)=F(b-0)-F(a);
(5)P(X=a)=F(a)-F(a-0).
以上公式的规律是:
对于左端点a,不包括它时,用函数值F(a),包括它时,用右极限F(a-0);
对于右端点b,不包括它时,用右极限F(b-0),包括它时,用函数值F(b).
四、会利用分布列或密度函数求分布函数
根据分布列求分布函数时,先将RVX的取值从小到大排好,x1<x2<...xn,则分布函数是一个n+1段的分段函数:
当xi≤x<x(i+1)时,F(x)=p1+p2+...+pi,(i=1,2,...,n)
当x<x1时,F(x)=0.
根据分布密度求分布函数时,先考虑密度函数是几段的,如果它被x1<x2<...xn分成n+1段的,则F(x)也被x1<x2<...<xn分成n+1段的。
当xi≤x<x(i+1)时,F(x)=∫[-∞,x1]f1(x)dx+∫[x1,x2]f2(x)dx+...+∫[xi,x]f(i+1)(x)dx;
当x<x1时,F(x)=∫[-∞,x]f1(x)dx.
五、会利用分布函数求分布列或密度函数
如果分布函数是分段常数的,则它是离散型随机变量的分布函数,应求分布列。需要确定它取什么值,以及取这些值的概率。
它取的值就是分段函数的各段端点x1,x2,...,xn,因为在其它点分布函数连续,它们的概率为0。而
P(X=xi)=F(xi)-F(xi-0).
如果分布函数是连续的,则它是连续型随机变量的分布函数,应求分布密度。对于F(x)的可导点,密度函数f(x)=F'(x),对于F(x)的不可导点x0,f(x0)的值你可以根据它周围点x的函数值自定。