马尔萨斯人口论与数学模型

马尔萨斯人口论

  • 人口有几个增长的趋势
  • 食物供应只有算数增长的趋势:1,2,3…
  • 人口会有无限增长的趋势,知道食物供应的极限为止
    结论:要控制人口的无节制增长

马尔萨斯人口模型

P(t) t时刻的人口数量
问题:
 1. 已知当前或者过去某个时刻的人口数量,预测未来某个时刻的人口
 2. 遥远未来的趋势(t趋于无穷)
高尔斯人口模型(r是一个常数)

假如2002年初人口总数是p,则2002年出生的人数和死亡的人口为bp和dp(出生率b,死亡率q),所以2003年初的人口总数为
p + b p − d p = ( 1 + b − d ) p = ( 1 + r ) p p+bp-dp=(1+b-d)p=(1+r)p p+bpdp=(1+bd)p=(1+r)p
这里的r就是自然增长率。这个模型是离散的

马尔萨斯人口模型

假设人口增长率为r是常数(或单位时间内人口得增长量与当时的人口成正比)
P ( t + Δ t ) − P ( t ) = r P ( t ) Δ t P(t+Δt)-P(t)=rP(t)Δt P(t+Δt)P(t)=rP(t)Δt(理解:rP(t)为单位时间增长的人数,与时间成正比,rP(t)Δt为Δt时间内增加的人数)
P ( t + d t ) − P ( t ) = r P ( t ) d t P(t+dt)-P(t)=rP(t)dt P(t+dt)P(t)=rP(t)dt两边除以dt得
d P ( t ) d t = r P ( t ) {dP(t)\over{dt}}=rP(t) dtdP(t)=rP(t) d P ( t ) P ( t ) = r d t {dP(t)\over P(t)}={r \over dt} P(t)dP(t)=dtr l n P ( t ) = r t + c lnP(t)=rt+c lnP(t)=rt+c P ( t ) = e ( r t + c ) ① P(t)=e^{(rt+c)}① P(t)=e(rt+c) P ( t 0 ) = P 0 ② P(t_0)=P_0② P(t0)=P0 P ( t 0 ) = e r t 0 + c = P 0 ③ P(t_0)=e^{rt_0+c}=P_0③ P(t0)=ert0+c=P0 ① ② ③ 得 P ( t ) = P 0 e r ( t − t 0 ) ①②③得P(t)=P_0e^{r(t-t_0)} P(t)=P0er(tt0)

Logistic模型(地球可以容纳的数量有限,r并非是一个常数)

马尔萨斯模型中r是常数,在现在看来存在一些不合理
自然增长率是时间的减函数(人口增长到一定数量后,增长率下降)

随着时间增长,人口增加,人口自然增加率下降
r ( t ) = r ( P ( t ) ) r(t)=r(P(t)) r(t)=r(P(t))
假设 r ( k ) = r − s k ① r(k)=r-sk① r(k)=rsk
r~固有增长率:k很小时,也就是马尔萨斯模型)
K~地球所能容纳的最大人口数,所以
r ( K ) = 0 r(K)=0 r(K)=0 s = r K ② s={r \over K}② s=Kr 由 ① ② 得 r ( k ) = r ( 1 − k K ) 由①②得r(k)={r(1-{k\over K})} r(k)=r(1Kk)
∵k实际上就是当前人口数量,即 P ( t ) P(t) P(t)
r ( k ) = r ( P ( t ) ) = r ( 1 − P ( t ) K ) r(k)=r(P(t))={r(1-{P(t)\over K})} r(k)=r(P(t))=r(1KP(t))
当P(t)很小时,就是马尔萨斯模型
代入马尔萨斯 d P ( t ) d t = r P ( t ) {dP(t)\over{dt}}=rP(t) dtdP(t)=rP(t) d N ( t ) d t = r ( 1 − N ( t ) K ) N ( t ) {dN(t)\over dt}={r(1-{N(t)\over K})N(t)} dtdN(t)=r(1KN(t))N(t) N ( t 0 ) = N 0 N(t_0)=N_0 N(t0)=N0
N(t)表示时间t时得人口数量。换个符号与马尔萨斯区分
N ( t ) = K 1 + C e − r ( t − t 0 ) N(t)={K\over {1+Ce^{-r(t-t_0)}}} N(t)=1+Cer(tt0)K C = K − P 0 P 0 C={{K-P_0}\over P_0} C=P0KP0
在这里插入图片描述
考虑这个模型得离散比
Δ N Δ t = r N ( 1 − N K ) {ΔN \over Δt}={rN(1-{N\over K})} ΔtΔN=rN(1KN) Δ N = N t + 1 − N t ΔN=N_{t+1}-N_t ΔN=Nt+1Nt Δ t = 1 Δt=1 Δt=1
得到
N t + 1 − N t = r N t ( 1 − N t K ) N_{t+1}-N_t=rN_t(1-{N_t\over K}) Nt+1Nt=rNt(1KNt)这里得时间离散步长取为1,每一代就是一个时间步
N t + 1 = ( 1 + r ) N t − r K N t 2 N_{t+1}={(1+r)N_t-{r\over K}N^2_t} Nt+1=(1+r)NtKrNt2

Leslie模型考虑年龄分布

在这里插入图片描述

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值