初识树状数组 Educational Codeforces Round 10 D - Nested Segments

记得以前就看过树状数组,好像因为并不能看懂,最近学习中偶得一文,讲解的十分清楚:
贴个链接:http://blog.csdn.net/int64ago/article/details/7429868
下面直接引用大牛所写的东西:
lowbit(k)就是把k的二进制的高位1全部清空,只留下最低位的1,比如10的二进制是1010,则lowbit(k)=lowbit(1010)=0010(2进制)
lowbit(1111)=1
lowbit(1011)=1

上面那么多文字说lowbit,还没说它的用处呢,它就是为了联系a数组和c数组的!ck表示从ak开始往左连续求lowbit(k)个数的和,比如c[0110]=a[0110]+a[0101],就是从110开始计算了0010个数的和,因为lowbit(0110)=0010,可以看到其实只有低位的1起作用,因为很显然可以写出c[0010]=a[0010]+a[0001],这就为什么我们任何数都只关心它的lowbit,因为高位不起作用(基于我们的二分规则它必须如此!),除非除了高位其余位都是0,这时本身就是lowbit。
既然关系建立好了,看看如何实现a某一个位置数据跟改的,她不会直接改的(开始就说了,a根本不存在),她每次改其实都要维护c数组应有的性质,因为后面求和要用到。而维护也很简单,比如更改了a[0011],我们接着要修改c[0011],c[0100],c[1000],这是很容易从图上看出来的,但是你可能会问,他们之间有申明必然联系吗?每次求解总不能总要拿图来看吧?其实从0011——>0100——>1000的变化都是进行“去尾”操作,又是自己造的词–”,我来解释下,就是把尾部应该去掉的1都去掉转而换到更高位的1,记住每次变换都要有一个高位的1产生,所以0100是不能变换到0101的,因为没有新的高位1产生,这个变换过程恰好是可以借助我们的lowbit进行的,k +=lowbit(k)。
好吧,现在更新的次序都有了,可能又会产生新的疑问了:为什么它非要是这种关系啊?这就要追究到之前我们说c8可以看作a1~a8的左半边和+右半边和……的内容了,为什么c[0011]会影响到c[0100]而不会影响到c[0101],这就是之前说的c[0100]的求解实际上是这样分段的区间 c[0001]~c[0001] 和区间c[0011]~c[0011]的和,数字太小,可能这样不太理解,在比如c[0100]会影响c[1000],为什么呢?因为c[1000]可以看作0001~0100的和加上0101~1000的和,但是0101位置的数变化并会直接作用于c[1000],因为它的尾部1不能一下在跳两级在产生两次高位1,是通过c[0110]间接影响的,但是,c[0100]却可以跳一级产生一次高位1。
可能上面说的你比较绕了,那么此时你只需注意:c的构成性质(其实是分组性质)决定了c[0011]只会直接影响c[0100],而c[0100]只会直接影响[1000],而下表之间的关系恰好是也必须是k +=lowbit(k)

先做了以前用线段树做的入门题,试着改用树状数组做,倒是一时没想出来如何去处理端点 l 和 r;
贴个代码:
hdu 1556

using namespace std;
const int MAXN=100005;
int c[MAXN];
int n;

int lowbit(int x){  //把二进制中所有的高位1 全部都去掉,只留下最低位的1
    return x&(-x);
}
void add(int i,int val){
    while(i<=n){
        c[i]+=val;
        i+=lowbit(i);
    }
}
int sum(int i){  //求1~n 的区间和,  但是这其中有很多个线段,每lowbit一次就是跳到下一个区间
    int s=0;
    while(i>0){
        s+=c[i];
        i-=lowbit(i);
    }
    return s;
}
int main(){
    //freopen("1.txt","r",stdin);
    int a,b;
    while(~scanf("%d",&n)&& n){
        memset(c,0,sizeof(c));
        for(int i=0;i<n;i++){
            scanf("%d%d",&a,&b);
            add(a,1);
            add(b+1,-1);
//        for(int j=1;j<=n;j++)
//            printf("%d ",c[j]);
//        printf("\n");
        }
        for(int i=1;i<n;i++)
          printf("%d ",sum(i));
        printf("%d\n",sum(n));
    }
    return 0;
}

水题:
hdu…..1541
这题要记录的是,思维比较有用的一种树状数组:
我的想法:每一颗星星都有x,y。 我想将所有的星星(记录在A里面)按x 从小到大排,然后用一个X数组记录所有星星的y(假设题意中星星的y 不是从小到大), 然后从遍历A,对每一个A,先用lower_bound找到A[i].y在X中的位置pos,对应的树状数组sum(pos) 就是A[i].i 的答案。
分析: 因为x必然是按照从小到大的顺序排列,更新A[i].y位置pos 很巧妙地达到了我们的目的。

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<stdlib.h>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#define mem(a) memset(a,0,sizeof(a))
#define INF 0x7fffffff   //INT_MAX
#define inf 0x3f3f3f3f   //
const double PI = acos(-1.0);
const double e = exp(1.0);
template<class T> T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }
template<class T> T lcm(T a, T b) { return a / gcd(a, b) * b; }
bool cmpbig(int a,int b){return a>b;}
bool cmpsmall(int a,int b){return a<b;}
using namespace std;

struct segment{
    int x, y, i;
} A[200000];
bool cmp(segment a,segment b){
    if(a.x==b.x)
        return a.y<b.y;
    else
        return a.x<b.x;
}
int N;
int ans[200000];
int X[200000], NX;
int c[200001];

void add(int i, int v){
    for(; i<=N; i+=i&-i)
        c[i]+=v;
}

int sum(int x){
    int ret=0;
    for(; x>0; x-=x&-x)
        ret+=c[x];
    return ret;
}
int flag[200000];
int main()
{
    freopen("1.txt","r",stdin);
    while(~scanf("%d", &N)){
    mem(c);
    for(int i=1; i<=N; i++){
        scanf("%d %d",&A[i].x,&A[i].y);
        A[i].i=i;
        X[i]=A[i].y;
    }
    sort(X+1,X+N);
    sort(A+1,A+1+N,cmp);
    mem(ans);
    for(int i=1;i<=N;i++){
        int pos=lower_bound(X+1,X+N+1,A[i].y)-X;
//      printf("pos=%d\n",pos);
        ans[A[i].i]=sum(pos);
        add(pos,1);
    }
    mem(flag);
    for(int i=1;i<=N;i++){
//        printf("%d\n",ans[i]);
        flag[ans[i]]++;
    }
    for(int i=0;i<N;i++)
        printf("%d\n",flag[i]);
    }

    return 0;
}

类似的题目:
经典树状数组 : Educational Codeforces Round 10 D - Nested Segments
题意:给你n个线段(区间),然后依次输出每一个线段 包含了多少个线段 : 比如 (1,10)包含(2,8)但是不包含(5,11)

仔细想想会发现,和上面那个题的处理方法其实是一样的:我们只要先把每个线段放入A里面, 然后按 l从大到小排列, 然后将 所有的A[i].r 放进X里面,X也sort一下,r是按从小到大排列
然后遍历A,对每一个A[i],找到r 在X中的位置pos,接着对于这一个i 的ans就是树状数组的sum(pos);

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<stdlib.h>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#define mem(a) memset(a,0,sizeof(a))
#define INF 0x7fffffff   //INT_MAX
#define inf 0x3f3f3f3f   //
const double PI = acos(-1.0);
const double e = exp(1.0);
template<class T> T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }
template<class T> T lcm(T a, T b) { return a / gcd(a, b) * b; }
bool cmpbig(int a,int b){return a>b;}
bool cmpsmall(int a,int b){return a<b;}
using namespace std;

struct segment{
    int l, r, i;
} A[200005];
bool cmp(segment a,segment b){
    if(a.l==b.l)
        return a.r<b.r;
    else
        return a.l>b.l;
}
int N;
int ans[200005];
int X[200005], NX;
int c[200005];

void add(int i, int v){
    for(; i<=N; i+=i&-i)
        c[i]+=v;
}

int sum(int x){
    int ret=0;
    for(; x>0; x-=x&-x)
        ret+=c[x];
    return ret;
}
int main()
{
    //freopen("1.txt","r",stdin);
    while(~scanf("%d", &N)){
    mem(c);
    for(int i=1; i<=N; i++){
        scanf("%d %d",&A[i].l,&A[i].r);
        A[i].i=i;
        X[i]=A[i].r;
    }
    sort(X+1,X+N+1);
    sort(A+1,A+1+N,cmp);
    mem(ans);
    for(int i=1;i<=N;i++){
        int pos=lower_bound(X+1,X+N+1,A[i].r)-X ;
        ans[A[i].i]=sum(pos);
        add(pos,1);
    }
    for(int i=1;i<=N;i++){
        printf("%d\n",ans[i]);
    }
    }
    return 0;
}


数据集介绍:塑料瓶硬币目标检测数据集 一、基础信息 数据集名称:塑料瓶硬币目标检测数据集 数据规模: - 训练集:5,699张图片 - 验证集:885张图片 - 测试集:414张图片 分类类别: - Plastic(塑料制品):涵盖常见塑料物品的检测 - Bottle(瓶类):包括各类塑料瓶及其他瓶型 - Coin(硬币):多国硬币的识别与定位 标注格式: YOLO格式标注,包含边界框坐标及类别标签,适配主流目标检测框架 二、适用场景 环保回收系统开发: 支持构建智能垃圾分类模型,精准识别塑料制品与瓶类,助力自动化分拣流水线建设。 零售自动化设备: 适用于自动售货机硬币识别模块开发,提升支付系统的准确性与可靠性。 计算机视觉教学: 提供多目标检测场景,适合目标检测算法教学与实验验证。 工业质检应用: 可用于塑料制品生产线中的缺陷检测或产品分类场景。 三、数据集优势 类别覆盖精准: 包含塑料制品、瓶类、硬币三大垂直类别,覆盖环保、零售等核心应用场景需求。 标注质量优异: 严格校验的YOLO格式标注,边界框定位精准,支持高精度目标检测模型训练。 场景多样性丰富: 数据包含不同光照条件下的硬币、多角度瓶体形态、多样化塑料制品,增强模型泛化能力。 工业适配性强: 数据规模适配工业级模型训练需求,支持从实验研究到实际部署的全流程开发。
### Codeforces Educational Round 26 比赛详情 Codeforces是一个面向全球程序员的比赛平台,其中Educational Rounds旨在帮助参与者提高算法技能并学习新技巧。对于具体的Educational Round 26而言,这类比赛通常具有如下特点: - **时间限制**:每道题目的解答需在规定时间内完成,一般为1秒。 - **内存限制**:程序运行所占用的最大内存量被限定,通常是256兆字节。 - 输入输出方式标准化,即通过标准输入读取数据并通过标准输出打印结果。 然而,关于Educational Round 26的具体题目细节并未直接提及于提供的参考资料中。为了提供更精确的信息,下面基于以往的教育轮次给出一些常见的题目类型及其解决方案思路[^1]。 ### 题目示例与解析 虽然无法确切描述Educational Round 26中的具体问题,但可以根据过往的经验推测可能涉及的问题类别以及解决这些问题的一般方法论。 #### 类型一:贪心策略的应用 考虑一个问题场景,在该场景下需要照亮一系列连续排列的对象。假设存在若干光源能够覆盖一定范围内的对象,则可以通过遍历整个序列,并利用贪心的思想决定何时放置新的光源以确保所有目标都被有效照射到。这种情况下,重要的是保持追踪当前最远可到达位置,并据此做出决策。 ```cpp #include <bits/stdc++.h> using namespace std; bool solve(vector<int>& a) { int maxReach = 0; for (size_t i = 0; i < a.size(); ++i) { if (maxReach < i && !a[i]) return false; if (a[i]) maxReach = max(maxReach, static_cast<int>(i) + a[i]); } return true; } ``` #### 类型二:栈结构处理匹配关系 另一个常见问题是涉及到成对出现元素之间的关联性判断,比如括号表达式的合法性验证。这里可以采用`<int>`类型的栈来记录左括号的位置索引;每当遇到右括号时就弹出最近一次压入栈底的那个数值作为配对依据,进而计算两者间的跨度长度累加至总数之中[^2]。 ```cpp #include <stack> long long calculateParens(const string& s) { stack<long long> positions; long long num = 0; for(long long i = 0 ; i<s.length() ;++i){ char c=s[i]; if(c=='('){ positions.push(i); }else{ if(!positions.empty()){ auto pos=positions.top(); positions.pop(); num+=i-pos; } } } return num; } ``` #### 类型三:特定模式下的枚举法 针对某些特殊条件约束下的计数类问题,如寻找符合条件的三位整数的数量。此时可通过列举所有可能性的方式逐一检验是否符合给定规则,从而统计满足要求的结果数目。例如求解形如\(abc\)形式且不含重复数字的正整数集合大小[^3]。 ```cpp vector<int> generateSpecialNumbers(int n) { vector<int> result; for (int i = 1; i <= min(n / 100, 9); ++i) for (int j = 0; j <= min((n - 100 * i) / 10, 9); ++j) for (int k = 0; k <= min(n % 10, 9); ++k) if ((100*i + 10*j + k)<=n&&!(i==0||j==0)) result.emplace_back(100*i+10*j+k); sort(begin(result), end(result)); return result; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值