import numpy as np import pandas as pd ''' 聚合函数: count 分组中非NA值的数量 sum 非NA值的和 mean 非NA值的平均数 median 非NA值的算术中位数 std、var无偏(分母为n-1)标准差和方差 min、max 非NA值的最小值和最大值 prod 非NA值的积 first、last 第一个和最后一个非NA值 ''' data=pd.DataFrame({'level':['a','b','c','b','a'], 'num':[3,5,6,8,9]}) combine=data['num'].groupby(data['level']) print(combine.sum()) #分组求平均值 print('分组求平均值:',combine.mean()) #返回每个分组的频率 print('返回每个分组的频率:',combine.size()) #根据数据的所属类型对进行分组 combine_1=data.groupby(data.dtypes,axis=1) print('数据的所属类型对进行分组:',dict(list(combine_1)))#这里combine_1的是Serise数据结构,需要转换线转换为列表,再转成字典的形式才能打印 #数据聚合 new_data=data.groupby('level') print('数据聚合求平均值',new_data.agg('mean')) #支持多个聚合函数一起使用 data_2=pd.DataFrame({'level':['a','b','c','b','a'], 'num':[3,5,6,8,
python numpy和pandas的聚合分组数据处理及分析
最新推荐文章于 2024-09-19 17:07:35 发布
本文介绍了如何使用numpy和pandas进行数据的聚合和分组处理。通过示例展示了count、sum、mean、median等聚合函数的应用,以及groupby方法的使用,包括求平均值、频率、数据类型分组和多函数聚合。同时,还探讨了transform方法以及数据透视表的创建,以及计算分组频率的方法。
摘要由CSDN通过智能技术生成