大语言模型model官方文件整理【roberta_wwm,bert_wwm,bert,xlnet....】

tensorflow版本的模型 :
链接:https://pan.baidu.com/s/10tjVfypoQy6G_mkZK6cqOQ?pwd=yljr
提取码:yljr
模型文件名模型简称语料版本地址github地址加载方式huggingface加载
chinese_roberta_wwm_large_ext_L-24_H-1024_A-16RoBERTa-wwm-ext-large, Chinese中文维基百科,其他百科、新闻、问答等数据,总词数达5.4Btensorflow百度网盘 请输入提取码GitHub - ymcui/Chinese-BERT-wwm: Pre-Training with Whole Word Masking for Chinese BERT(中文BERT-wwm系列模型)
hflchinese-roberta-wwm-ext-largepytorchhttps://huggingface.co/hfl/chinese-roberta-wwm-ext-largehfl/chinese-roberta-wwm-ext-large
chinese_roberta_wwm_ext_L-12_H-768_A-12RoBERTa-wwm-ext, Chinesetensorflow百度网盘 请输入提取码
hflchinese-roberta-wwm-extpytorchhttps://huggingface.co/hfl/chinese-roberta-wwm-exthfl/chinese-roberta-wwm-ext
chinese_bert_wwm_ext_L-12_H-768_A-12BERT-wwm-ext, Chinesetensorflow百度网盘 请输入提取码
hflchinese-bert-wwm-extpytorchhfl/chinese-bert-wwm-ext · Hugging Facehfl/chinese-bert-wwm-ext
chinese_bert_wwm_L-12_H-768_A-12BERT-wwm, Chinesetensorflow百度网盘 请输入提取码
hfl/chinese-bert-wwm-extpytorchhfl/chinese-bert-wwm
GitHub - brightmart/roberta_zh: RoBERTa中文预训练模型: RoBERTa for Chinese
roberta_zh_l12RoBERTa_zh_L1230G原始文本,近3亿个句子,100亿个中文字(token),产生了2.5亿个训练数据(instance);覆盖新闻、社区问答、多个百科数据等;tensorflowroberta_zh_l12.zip_免费高速下载|百度网盘-分享无限制Bert 直接加载
roeberta_zh_L-24_H-1024_A-16RoBERTa-zh-Largetensorflowroeberta_zh_L-24_H-1024_A-16.zip_免费高速下载|百度网盘-分享无限制Bert 直接加载
RoBERTa_zh_L12_PyTorchRoBERTa_zh_L12pytorchRoBERTa_zh_L12_PyTorch.zip_免费高速下载|百度网盘-分享无限制Bert的PyTorch版直接加载
chinese_L-12_H-768_A-12bert_base, Chinese中文维基百科https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zipGitHub - google-research/bert: TensorFlow code and pre-trained models for BERT
uncased_L-2_H-128_A-2bert_tiny, 24个bert_uncased模型https://storage.googleapis.com/bert_models/2020_02_20/all_bert_models.zip
uncased_L-4_H-256_A-4bert_mini, 24个bert_uncased 模型
uncased_L-4_H-512_A-8bert_small,24个bert_uncased
uncased_L-8_H-512_A-8bert_medium, 24个bert_uncased
uncased_L-12_H-768_A-12bert_base, 24个bert_uncased
chinese_xlnet_mid_L-24_H-768_A-12XLNet-mid, Chinese中文维基百科,其他百科、新闻、问答等数据,总词数达5.4Btensorflow百度网盘 请输入提取码GitHub - ymcui/Chinese-XLNet: Pre-Trained Chinese XLNet(中文XLNet预训练模型)hfl/chinese-xlnet-mid
hflchinese-xlnet-midpytorchhttps://huggingface.co/hfl/chinese-xlnet-mid
chinese_xlnet_base_L-12_H-768_A-12XLNet-base, Chinesetensorflow百度网盘 请输入提取码hfl/chinese-xlnet-base
hflchinese-xlnet-basepytorchhttps://huggingface.co/hfl/chinese-xlnet-base
albert_tiny_zhalbert_tiny_zhhttps://storage.googleapis.com/albert_zh/albert_tiny.zipGitHub - brightmart/albert_zh: A LITE BERT FOR SELF-SUPERVISED LEARNING OF LANGUAGE REPRESENTATIONS, 海量中文预训练ALBERT模型
albert_tiny_489kalbert_tiny_zh(训练更久,累积学习20亿个样本)https://storage.googleapis.com/albert_zh/albert_tiny_489k.zip
albert_tiny_zh_googlealbert_tiny_google_zh(累积学习10亿个样本,google版本)https://storage.googleapis.com/albert_zh/albert_tiny_zh_google.zip
albert_small_zh_googlealbert_small_google_zh(累积学习10亿个样本,google版本)https://storage.googleapis.com/albert_zh/albert_small_zh_google.zip
albert_large_zhalbert_large_zhhttps://storage.googleapis.com/albert_zh/albert_large_zh.zip
albert_base_zhalbert_base_zh(小模型体验版)https://storage.googleapis.com/albert_zh/albert_base_zh.zip
albert_base_zh_additional_36k_stepsalbert_base_zh(额外训练了1.5亿个实例即 36k steps * batch_size 4096)https://storage.googleapis.com/albert_zh/albert_base_zh_additional_36k_steps.zip
albert_xlarge_zh_177kalbert_xlarge_zh_177khttps://storage.googleapis.com/albert_zh/albert_xlarge_zh_177k.zip
albert_xlarge_zh_183kalbert_xlarge_zh_183k(优先尝试)https://storage.googleapis.com/albert_zh/albert_xlarge_zh_183k.zip
voidfulalbert_chinese_tinypytorchhttps://huggingface.co/voidful/albert_chinese_tinyvoidful/albert_chinese_tiny
voidfulalbert_chinese_smallpytorchhttps://huggingface.co/voidful/albert_chinese_smallvoidful/albert_chinese_small
voidfulalbert_chinese_basepytorchvoidful/albert_chinese_base · Hugging Facevoidful/albert_chinese_base
voidfulalbert_chinese_largepytorchhttps://huggingface.co/voidful/albert_chinese_largevoidful/albert_chinese_large
voidfulalbert_chinese_xlargepytorchvoidful/albert_chinese_xlarge · Hugging Facevoidful/albert_chinese_xlarge
voidfulalbert_chinese_xxlargepytorchhttps://huggingface.co/voidful/albert_chinese_xxlargevoidful/albert_chinese_xxlarge
electra_180g_largeELECTRA-180g-large, Chinesetensorflow百度网盘 请输入提取码GitHub - ymcui/Chinese-ELECTRA: Pre-trained Chinese ELECTRA(中文ELECTRA预训练模型)hfl/chinese-electra-180g-large-discriminator
hflchinese-electra-180g-large-discriminatorpytorchhttps://huggingface.co/hfl/chinese-electra-180g-large-discriminator
electra_180g_baseELECTRA-180g-base, Chinesetensorflow百度网盘 请输入提取码hfl/chinese-electra-180g-base-discriminator
hflchinese-electra-180g-base-discriminatorpytorchhttps://huggingface.co/hfl/chinese-electra-180g-base-discriminator
electra_180g_small_exELECTRA-180g-small-ex, Chinesetensorflow百度网盘 请输入提取码hfl/chinese-electra-180g-small-ex-discriminator
hflchinese-electra-180g-small-ex-discriminatorpytorchhttps://huggingface.co/hfl/chinese-electra-180g-small-ex-discriminator
electra_180g_smallELECTRA-small, Chinesetensorflow百度网盘 请输入提取码hfl/chinese-electra-180g-small-discriminator
hflchinese-electra-180g-small-discriminatorpytorchhttps://huggingface.co/hfl/chinese-electra-180g-small-discriminator
chinese_macbert_largeMacBERT-large, Chinesetensorflow百度网盘 请输入提取码GitHub - ymcui/MacBERT: Revisiting Pre-trained Models for Chinese Natural Language Processing (MacBERT)hfl/chinese-macbert-large
hflchinese-macbert-largepytorchhttps://huggingface.co/hfl/chinese-macbert-large
chinese_macbert_baseMacBERT-base, Chinesetensorflow百度网盘 请输入提取码hfl/chinese-macbert-base
hflchinese-macbert-basepytorchhttps://cdn-lfs.huggingface.co/hfl/chinese-macbert-base
Erlangshen-SimCSE-110M-Chinesepytorch
unsup-simcse-bert-base-uncasedpytorch
sup-simcse-roberta-largepytorch
sup-simcse-bert-base-uncasedpytorch
albert-base-chinese-cluecorpussmallpytorch
### 回答1: 要下载Chinese_roberta_wwm_ext_pytorch,首先需要确定下载来源和平台。一般来说,可以在开源社区或者代码托管平台找到该模型下载链接。在网上搜索“Chinese_roberta_wwm_ext_pytorch下载”可以获得相关的下载资源。 在找到下载链接后,点击链接进入下载页面。根据页面上的指引和说明,选择合适的版本和格式进行下载。通常情况下,会提供预训练好的模型文件和相应的代码。 下载完成后,解压缩模型文件。通常情况下,模型文件会以压缩包的形式进行下载,所以需要解压缩以获得可用的模型文件。 接下来,可以使用Python的torch或者pytorch库进行模型的加载和使用。根据具体的使用场景和需求,可以参考相关的文档和代码示例。 要注意的是,Chinese_roberta_wwm_ext_pytorch是基于PyTorch框架的预训练模型,所以在下载前需要确保已安装PyTorch和相关的依赖库。 总结起来,要下载Chinese_roberta_wwm_ext_pytorch,首先找到下载链接,然后选择合适的版本和格式进行下载,解压缩模型文件,最后使用PyTorch库进行加载和使用。 ### 回答2: chinese_roberta_wwm_ext_pytorch是一个基于PyTorch框架的汉语预训练模型。它是对RoBERTa模型的扩展,专门为中文自然语言处理任务而设计。下载chinese_roberta_wwm_ext_pytorch分为以下几个步骤: 1.GitHub上搜索chinese_roberta_wwm_ext_pytorch,找到该模型的开源代码库。 2. 确保你已经安装了PyTorch框架以及其他相关依赖库,如Transformers。 3. 在代码库中找到下载链接,点击链接下载模型文件。通常,该模型文件的格式为.pth或.bin。 4. 下载完成后,将模型文件保存在你的工作目录中,以备后续使用。 使用chinese_roberta_wwm_ext_pytorch模型时,可以参考以下示例代码: ```python import torch from transformers import AutoTokenizer, AutoModel # 加载tokenizer和model tokenizer = AutoTokenizer.from_pretrained("chinese_roberta_wwm_ext_pytorch") model = AutoModel.from_pretrained("chinese_roberta_wwm_ext_pytorch") # 输入文本 text = "这是一个例子。" # 文本编码和模型推理 inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) # 获取模型的预测结果 hidden_states = outputs.last_hidden_state ``` 以上代码中,我们首先通过`AutoTokenizer`和`AutoModel`加载了预训练的tokenizer和模型。然后,我们将文本输入通过tokenizer进行编码,生成模型所需的输入张量`inputs`。接下来,我们将编码后的输入传递给模型,得到模型的输出结果`outputs`。最后,我们从输出结果中获取最后一层的隐藏状态`hidden_states`,可用于后续任务。 总结来说,下载chinese_roberta_wwm_ext_pytorch模型需要找到相应的代码库并下载模型文件,然后使用PyTorch框架加载模型和tokenizer,进行文本编码和模型推理。 ### 回答3: chinese_roberta_wwm_ext_pytorch是一个预训练的中文RoBERTa模型,它基于PyTorch实现。RoBERTa自然语言处理任务中具有很高的性能,可以用于文本分类、词性标注、命名实体识别等多种任务。 要下载chinese_roberta_wwm_ext_pytorch模型,首先需要在互联网上找到可靠的下载源。可以通过搜索引擎或者在GitHub等代码托管平台上查找。找到对应的下载链接后,点击链接进入下载页面。 在下载页面上,一般会提供下载命令或者直接提供预训练模型文件下载链接。根据页面的提示进行相应的操作即可完成下载过程。 下载完成后,可以将模型文件解压缩到本地的指定目录中,以方便后续使用。通常模型文件会以一个文件夹的形式存在,其中包含了模型的参数、配置文件以及其他相关文件下载模型后,就可以在项目中通过加载模型文件,使用其中的预训练参数进行文本处理任务。使用PyTorch的相关API可以很方便地加载模型,然后将待处理的文本输入模型,获取模型的输出结果。 总之,要下载chinese_roberta_wwm_ext_pytorch模型,需要找到可靠的下载源,按照下载页面的提示进行下载和解压缩,然后在项目中加载模型,使用其进行中文文本处理任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

tiki_taka_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值