opencv学习笔记二十三:最小外接矩形和圆

76 篇文章 526 订阅 ¥9.90 ¥99.00
本文介绍了如何使用OpenCV进行图像处理,包括将图像转为灰度并进行Canny边缘检测,然后应用道格拉斯-普克算法抽稀轮廓,以获取最小外接矩形。通过计算圆形度和矩形度来提取物体特征,其中最小外接矩形用于旋转校正,而圆形度和矩形度分别基于面积和周长计算。最后,文章提到了如何寻找轮廓的最小外接矩形和最小外接圆的方法。
摘要由CSDN通过智能技术生成

应用:旋转校正,另外计算圆形度和矩形度可作为该物体的特征。

圆形度:A/C^2,A为面积,C为周长;

矩形度:轮廓面积/最小外接矩形面积;

步骤:将一幅图像先转灰度,再canny边缘检测得到二值化边缘图像,再寻找轮廓,轮廓是由一系列点构成的,要想获得轮廓的最小外接矩形,首先需要得到轮廓的近似多边形,用道格拉斯-普克抽稀(DP)算法,道格拉斯-普克抽稀算法,是将曲线近似表示为一系列点,并减少点的数量的一种算法。
该算法实现抽稀的过程是:
1)对曲线的首末点虚连一条直线,求曲线上所有点与直线的距离,并找出最大距离值dmax,用dmax与事先给定的阈值D相比: 
2)若dmax<D,则将这条曲线上的中间点全部舍去;则该直线段作为曲线的近似,该段曲线处理完毕。 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东城青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值